Geometry/Trig Name: __________________________

Slides:



Advertisements
Similar presentations
GEOMETRY Proving Triangles are Congruent: ASA and AAS.
Advertisements

Developing a Triangle Proof. 1. Developing Proof Is it possible to prove the triangles are congruent? If so, state the theorem you would use. Explain.
SECTION 4.4 MORE WAYS TO PROVE TRIANGLES CONGRUENT.
EXAMPLE 1 Identify congruent triangles
Angles and Parallel Lines
Parallel Lines and Planes Section Definitions.
Outcome F Quadrilaterals
PARALLEL LINES and TRANSVERSALS.
Properties of Parallel Lines What does it mean for two lines to be parallel? THEY NEVER INTERSECT! l m.
Geometry/Trig 2 Name: __________________________
INTERIOR ANGLES THEOREM FOR QUADRILATERALS By: Katerina Palacios 10-1 T2 Geometry.
Proving lines parallel Chapter 3 Section 5. converse corresponding angles postulate If two lines are cut by a transversal so that corresponding angles.
PROVING LINES PARALLEL. CONVERSE OF  … Corresponding Angles Postulate: If the pairs of corresponding angles are congruent, then the lines are parallel.
ProofsPolygonsTriangles Angles and Lines Parallel.
3.3 Parallel Lines and Transversals Proving angles congruent with parallel lines.
Prove Lines are Parallel
Geometry/Trig 2Name: __________________________ Unit 3 Review Packet ANSWERSDate: ___________________________ Section I – Name the five ways to prove that.
3-3 Proving Lines Parallel
Warm-Up Classify the angle pair as corresponding, alternate interior, alternate exterior, consecutive interior or.
Coordinate Geometry ProofsPolygonsTriangles.
Section 3.2 Parallel Lines and Transversals Learning Goal: Students will identify congruent angles associated with parallel lines and transversals and.
Geometry/Trig 2Name: __________________________ Unit 3 Review PacketDate: ___________________________ Section I. Construct the following in the box: a.Create.
The answers to the review are below. Alternate Exterior Angles Postulate Linear Pair Theorem BiconditionalConclusion Corresponding Angles Postulate 4 Supplementary.
By Shelby Smith and Nellie Diaz. Section 8-1 SSS and SAS  If three sides of one triangle are congruent to three sides of another triangle, then the triangles.
Transversal t intersects lines s and c. A transversal is a line that intersects two coplanar lines at two distinct points.
Geometry Name: __________________________ Unit 4 WS 2Date: __________________________ Identify the polygon by name, whether it is convex or non convex,
Quadrilaterals and Polygons SOL Review Session. Names of Polygons Number of SidesName
Interior and exterior angles. Exterior and interior angles are supplementary.
Sections  A parallelogram must have:  Both pair of opposite sides congruent  Both pair of opposite angles congruent  Consecutive angles that.
Section V - Proofs StatementsReasons J GK I H 1. Given: GK bisects  JGI; m  3 = m  2 Prove: GK // HI Given Given Geometry/Trig.
Station 1 – Provide a justification (definition, property, postulate, or theorem) for each statement. D 1.) If BH ^ DC, then ÐDCH is a right angle. 2.)
Geometry/Trig Name: __________________________
Parallel Lines and Planes
Corresponding Angles Postulate
6-2 Properties of Parallelograms
Parallel Lines and Triangles
3.3 Proving Lines are Parallel
Characteristics of Parallelograms
Section 2-5: Perpendicular Lines & Proofs
Proving Lines Parallel
Sec. 3-2 Proving Parallel Lines
Geometry/Trig 2 Name: __________________________
3.3 Parallel Lines & Transversals
Module 9, Lessons 9.1 and Parallelograms
Prove Triangles Congruent by ASA & AAS
Warm Up State the converse of each statement.
Parallel Lines and Planes
Learning Journey – Angles
Parallel Lines cut by a Transversal
Parallelograms.
Geometry/Trig Name: __________________________
3.3 Parallel Lines & Transversals
Angles and Parallel Lines
3-3: Proving Lines Parallel
Angles and Parallel Lines
Angles and Parallel Lines
3.2 – Proving Lines Parallel
Angles and Parallel Lines
Geometry/Trig Name: __________________________
Ratios, Proportions and Similarity
Name ______________________________________________ Geometry Chapter 3
Practice for Proofs of: Parallel Lines Proving AIA, AEA, SSI, SSE only
Section 3-3 Proving Lines Parallel, Calculations.
Hint: Set up & solve a system of equations.
Parallel Lines and Transversals
2-3 Parallel lines and triangle angle sums
Angles and Parallel Lines
Geometry/Trig Name: _________________________
Presentation transcript:

Geometry/Trig Name: __________________________ Unit 3 Review Packet Date: ___________________________ Section I – Identify the pairs of angles. Lines are not necessarily parallel. 1. Ð7 & Ð11 ________________________________ 2. Ð3 & Ð6 _________________________________ 3. Ð8 & Ð16 ________________________________ 4. Ð2 & Ð7 _________________________________ 5. Ð3 & Ð5 _________________________________ 6. Ð1 & Ð16 _________________________________ 7. Ð1 & Ð6 __________________________________ 8. Ð1 & Ð4 __________________________________ 1 2 3 4 6 8 7 5 9 10 11 12 14 16 15 13 b a d c Section II – Fill In The Blank. Vertical angles are ______________________________________ If two lines are parallel, then corresponding angles are ___________________________________ If two lines are parallel, then alternate interior angles are ________________________________ If two lines are parallel, then alternate exterior angles are ________________________________ If two lines are parallel, then same side interior angles are ________________________________ If two lines are parallel, then same side exterior angles are _______________________________ Section III – Name the three main ways to prove that lines are parallel. 1. ____________________________________________________________________ ______________________________________________________________________ 2. ____________________________________________________________________ 3. ____________________________________________________________________

Geometry/Trig Unit 3 Review Packet Page 2 Section IV – Determine which lines, if any, are parallel based on the given information. 1.) Ð1  Ð9 _________________________ 2.) Ð1  Ð4 _________________________ 3.) mÐ12 + mÐ14 = 180 _________________________ 4.) Ð1  Ð13 _________________________ 5.) Ð7  Ð14 _________________________ 6.) mÐ13 = mÐ11 _________________________ 1 2 3 4 6 8 7 5 9 10 11 12 14 16 15 13 b a c d Section V - Proofs 1 3 1. Given: a || b Prove: Ð1 and Ð7 are supplementary (We’ve completed this proof numerous times in class. It may take you more steps than this.) b 4 5 6 7 a 8 2 Statements Reasons 1. 1. 2. 2. 3. 3. 4. 4. 5. 5.

Geometry/Trig Unit 3 Review Packet Page 3 1 2 3 4 5 A C D E F B J K Given: AJ || CK; mÐ1 = mÐ5 Prove: BD || FE Reasons Statements 1. _________________________ 1. Given 2. mÐ1 = mÐ3; 1  3 2. ___________________________ ___________________________ 3. _________________________ 3. Given 4. _________________________ 4. Substitution 5. _________________________ ___________________________ P 3. Given: ST || QR; Ð1 @ Ð3 Prove: Ð2 @ Ð3 1 3 S T 2 Q R Statements Reasons 1. _________________________ 1. ____________________________ 2. Ð1 @ Ð2 2. ____________________________ ___________________________ ___________________________ 3. _________________________ 3. Given 4. 4. ____________________________

Geometry/Trig Unit 3 Review Packet Page 4 1 3 4 5 6 7 8 9 10 2 b a c d 4. Given: a || b; Ð3 @ Ð4 Prove: Ð10 @ Ð1 Statements Reasons 1. _________________________ 1. Given 2. 1  3 2. ___________________________ 3. _________________________ 3. Substitution 4. a || b 4. ___________________________ 5. 4  7 5. ___________________________ ___________________________ ___________________________ 6. _________________________ 6. Substitution 7. 7  10 7. ___________________________ 8. _________________________ 8. Substitution J G K I H 2 1 3 5. Given: GK bisects ÐJGI; Ð3  Ð2 Prove: GK || HI Statements Reasons 1. _________________________ 1. Given 2. Ð1  Ð2 2. ___________________________ 3. _________________________ 3. Given 4. _________________________ 4. ___________________________ 5. _________________________ 5. If _____________________ angles are congruent, then the lines are parallel.

Unit 3 Review Packet – Page 5 Geometry/Trig Unit 3 Review Packet – Page 5 Section VI – Solve each problem. 1. 2. w Hint: Find same-side interior angles. 100° 2x + y z + 57 x 5x + y 37° 2y 5x - y w = _______ x = _______ y = _______ z = _______ x = _______ y = _______ 3. 4. 30° x + 12 6x 8x + 1 y 5x 75° x = _______ y = _______ x = _______ 5. 6. mA = _______ mCBD = _______ mABC = _______ A B D C y 115° 45° x 30° 60° z Classify each triangle by its sides and angles: CBD ___________________________ ABC ___________________________ ABD ___________________________ x = _______ y = _______ z = _______

Unit 3 Review Packet – Page 6 Geometry/Trig Unit 3 Review Packet – Page 6 Section VII – Complete the chart and answer the questions related to polygons.. Number of Sides Name of polygon Sum of interior angles. Measure of each interior angle if it was a regular polygon Sum of the Exterior Angles Measure of each exterior angle if it was a regular polygon. Number of Diagonals that can be drawn. 3 4 5 6 7 8 9 10 n 1. 4x + 13 4x + 25 6x 2. A B 5x 4x + 17 80° 83° D C x = _______ Is AB || DC? __________ Is AD || BC? __________ x = _______