CSR Benchmark Test-Case Results

Slides:



Advertisements
Similar presentations
Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch Rui Li, J. Bisognano, R. Legg, and R. Bosch.
Advertisements

Paul Emma SLAC January 14, 2002 BERLIN CSR Benchmark Test-Case Results CSR Workshop.
ILC Accelerator School Kyungpook National University
Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Bunch compressors ILC Accelerator School May Eun-San Kim Kyungpook National University.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
ICFA Sardinia July 1-6, 2002 Z. Huang CSR Microbunching: Gain Calculation Zhirong Huang & Kwang-Je Kim Argonne National Laboratory.
Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Magnetic Compression of High Brightness Beams: Survey of Experimental Results Scott G. Anderson ICFA Sardinia July 2002.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Paul Emma Stanford Linear Accelerator Center July 2, 2002 Paul Emma Stanford Linear Accelerator Center July 2, 2002 High Brightness Electron Beam Magnetic.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Yujong Kim The Center for High Energy Physics, Korea DESY Hamburg, Germany Alternative Bunch Compressors.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Intra-beam Scattering in the LCLS Linac Zhirong Huang, SLAC Berlin S2E Workshop 8/21/2003.
1 Alternative ILC Bunch Compressor 7 th Nov KNU (Kyungpook National Univ.) Eun-San Kim.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
Change in Program Tuesday Morning Review of 2002 CSR Workshop (T. Limberg, 20 min) CSR calculation Models (M. Dohlus, 40 min) The 3D Codes TraFiC4 and.
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
NLC - The Next Linear Collider Project Tor Raubenheimer Beam Delivery System Design Differences American Linear Collider Physics Meeting SLAC January 8.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.
Emittance Growth in the SPPS Chicane P. Emma, P. Krejcik, C. O’Connell, M. Woodley; SLAC, H. Schlarb, F. Stulle; DESY.
A single-shot method for measuring fs bunches in linac-based FELs Z. Huang, K. Bane, Y. Ding, P. Emma.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
OPERATED BY STANFORD UNIVERSITY FOR THE U.S. DEPT. OF ENERGY 1 Alexander Novokhatski April 13, 2016 Beam Heating due to Coherent Synchrotron Radiation.
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Cutting Beam Horns in BC1
Short pulse, low charge LCLS operation
X-band FEL beam dynamics issues
MULTI-TeV BUNCH COMPRESSOR STUDIES
Sven Reiche UCLA ICFA-Workshop - Sardinia 07/02
Limitations of Electron Beam Conditioning in Free-Electron Lasers
CSR Microbunching in the Zeuthen-Workshop Benchmark Chicane
Review of Application to SASE-FELs
Progress activities in short bunch compressors
Time-Resolved Images of Coherent Synchrotron Radiation Effects
Chromatic Corrections in LCLS-II P. Emma, Y. Nosochkov, M. Woodley Mar
LCLS Longitudinal Feedback and Stability Requirements
G. Marcus, Y. Ding, J. Qiang 02/06/2017
calculation with 107 particles
LCLS bunch length monitor utilizing coherent radiation
Z. Huang LCLS Lehman Review May 14, 2009
Final Focus optics for Possible New B-Line
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Experiments on CSR Effects at CTF II
Linac/BC1 Commissioning P
Linac (WBS 1.2.2) Vinod Bharadwaj April 23, 2002
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Linac Diagnostics Patrick Krejcik, SLAC April 24, 2002
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
LCLS Longitudinal Feedback System and Bunch Length Monitor Juhao Wu Stanford Linear Accelerator Center LCLS DOE Review, February 08, 2006 LCLS longitudinal.
Coupler Effects in High Energy Part of XFEL Linac
Enhanced Self-Amplified Spontaneous Emission
Bunch Compression Experiment in VUV-FEL BC3
Presentation transcript:

CSR Benchmark Test-Case Results Paul Emma SLAC January 14, 2001 BERLIN CSR Workshop

Chicane CSR Test-Case Use line-charge CSR    transient model described in LCLS-TN-01-12… (Stupakov/Emma, Dec. 2001) [same now used in Elegant] …based on TESLA-FEL-96-14 (Saldin et al., Nov. 1996) (T566 included, no ISR* added) * incoherent synchrotron radiation

Initial Gaussian Distribution Prior to Chicane perfectly linear correlation sE/E0 = 0.72 %  bunch head ss = 200 mm E0 = 5 GeV

Second Order Compression Included: T566 /mm T566  -3R56/2 leads to slight bunch shape distortion after drift-3 before drift-3

Beta and Dispersion Functions ‘CSR-altered’ bx ‘linear’ bx hx-max  267 mm ‘linear’ hx

Bunch Length and R56 ss0 = 200 mm ss = 20 mm R56 = -25 mm B1 B2 B3 B4

Final s-d phase space (gaussian input) sE/E0 = 0.716 %  bunch head ss = 20.3 mm

Energy Spread and Emittance (gaussian) B1 B2 B3 B4 E /E0  -0.043% sd  0.021% B1 B2 B3 B4 gex  1.52 mm

Total RMS Relative Energy Spread (including ‘chirp’) B1 B2 B3 B4

Chicane CSR-wake Movie (gaussian)

Chicane CSR-integrated-wake (gaussian)

Final x-x Phase Space (gaussian input) ge  1.52 mm geCSR  0.145 mm ge0 = 1.00 mm bopt  1.37 m aopt  -1.10

Final x-x Phase Space (gaussian & optimal b0, a0) emittance growth can be reduced by choosing optimal b-functions ge  1.15 mm geCSR  0.145 mm b  bopt a  aopt ge0 = 1.00 mm

Beta and emittance (gaussian & optimal b0, a0) too big? bmin  0.6 m b  bopt a  aopt gex  1.15 mm

CSR wakefields (gaussian  bend-1 to drift-2) L = 0.4 m drift-1 (20) L = 5 m Nbin = 600, smoothed over 4 bend-2 (10) L = 0.4 m drift-2 (10) L = 1 m

CSR wakefields (gaussian  bend-3 to drift-4) L = 0.4 m drift-3 (40) L = 5 m bend-4 (20) L = 0.4 m drift-4 (20) L = 2 m

Compressing Uniform Distribution

Final s-d phase space – Uniform input dist. sE/E0 = 0.720 % ss = 20.2 mm

Energy Spread and Emittance (uniform) E /E0  -0.046% sd  0.007% emittance growth reduced compared to gaussian gex  1.12 mm

Chicane CSR-wake Movie – Uniform Dist.

Chicane CSR-integrated-wake – Uniform Dist.

Final x-x Phase Space (uniform input) ge  1.12 mm geCSR  0.07 mm ge0 = 1.00 mm bopt  3.9 m aopt  -0.51

CSR wakefields (uniform  bend-1 to drift-2) L = 0.4 m drift-1 (20) L = 5 m Nbin = 600, smoothed over 4 bend-2 (10) L = 0.4 m drift-2 (10) L = 1 m

CSR wakefields (uniform  bend-3 to drift-4) L = 0.4 m drift-3 (40) L = 5 m bend-4 (20) L = 0.4 m drift-4 (20) L = 2 m

Betatron Amplitude per Bunch Slice gaussian l(s) uniform l(s)

Final s-d phase space - Single-Bend sE/E0 = 0.011 % ss = 20.1 mm

Energy Spread and Emittance – Single Bend steady-state bend magnet sd = 0.011% (24ssR2)1/3

CSR-Wake Movie - Single-Bend

LCLS BC2 CSR-integrated-wake (tracked dist.)