A Singlet Phosphinidene Stable at Room Temperature

Slides:



Advertisements
Similar presentations
Toward a Structure Determination Method for Biomineral-Associated Protein Using Combined Solid- State NMR and Computational Structure Prediction David.
Advertisements

Building Better Models of Visual Cortical Receptive Fields
Volume 2, Issue 3, Pages (March 2017)
A Crystal-Clear Interaction: Relating Neuroligin/Neurexin Complex Structure to Function at the Synapse  Joshua N. Levinson, Alaa El-Husseini  Neuron 
Unraveling Excited-Singlet-State Aromaticity via Vibrational Analysis
Ecofriendly Carbon Nanomaterials for Future Electronic Applications
“Seeing” the Invisibles at the Single-Molecule Level
A New Dimension for Low-Dimensional Carbon Nanostructures
Quentin Michaudel, Brett P. Fors  Chem 
Robert S. Jordan, Yves Rubin  Chem 
Volume 1, Issue 4, Pages (October 2016)
Unraveling Excited-Singlet-State Aromaticity via Vibrational Analysis
Self-Assembly of M30L60 Icosidodecahedron
Synthesis and Solution Processing of a Hydrogen-Bonded Ladder Polymer
Volume 3, Issue 2, Pages (August 2017)
Volume 2, Issue 5, Pages (May 2017)
Ching-Hsing Yu, Samuel Cukierman, Régis Pomès  Biophysical Journal 
Direct Growth of Well-Aligned MOF Arrays onto Various Substrates
Simple and Clean Photo-induced Methylation of Heteroarenes with MeOH
A View to a Kill: Structure of the RNA Exosome
Lotta Turunen, Ulrike Warzok, Christoph A. Schalley, Kari Rissanen 
Emotional Pain without Sensory Pain—Dream On?
Screening Solvent Effects in Anion Recognition
Synthesis in the Chemical Space Age
Volume 3, Issue 6, Pages (December 2017)
Rylene Ribbons with Unusual Diradical Character
Volume 1, Issue 6, Pages (December 2016)
Rahul C. Deo, Caroline M. Groft, K.R. Rajashankar, Stephen K. Burley 
Yuping Wang, J. Fraser Stoddart  Chem 
Volume 4, Issue 2, Pages (February 2018)
Volume 3, Issue 3, Pages (September 2017)
Volume 3, Issue 6, Pages (December 2017)
Fluorescence-Based Assay for Carbonic Anhydrase Inhibitors
Bio-inspired Self-Healing Electrolytes for Li-S Batteries
Volume 4, Issue 2, Pages (February 2018)
by Alexandra Velian, and Christopher C. Cummins
Igor V. Alabugin, Trevor Harris  Chem 
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Vibronic Enhancement of Algae Light Harvesting
A Drug-Drug Interaction Crystallizes a New Entry Point into the UPR
Volume 4, Issue 4, Pages (April 2018)
Transforming CO2 by Stabilizing the Labile Product
Volume 3, Issue 1, Pages (July 2017)
Volume 2, Issue 4, Pages (April 2017)
A Radical Mechanism for Frustrated Lewis Pair Reactivity
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Rylene Ribbons with Unusual Diradical Character
Volume 4, Issue 5, Pages (May 2018)
Volume 3, Issue 6, Pages (December 2017)
Richard Stones, Alexandra Olaya-Castro  Chem 
The Dynamic Nature of Phosphorus
The Elusive Nature of Excited States in Singlet Fission Materials
Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 
Hongcai Gao, Sen Xin, John B. Goodenough  Chem 
Volume 3, Issue 1, Pages 8-10 (July 2017)
Xinggui Gu, Ben Zhong Tang  Chem 
Volume 4, Issue 3, Pages (March 2018)
Volume 2, Issue 6, Pages (June 2017)
Khalid AlKaabi, Casey R. Wade, Mircea Dincă  Chem 
High-Performance Conjugated Polymer Photosensitizers
David Hubel and Torsten Wiesel
Assembling Halogen-Bonded Capsules via Cation Exchange
Helium Shows New Chemistry Not Seen Anywhere Else
Theory Reveals Novel Chemistry of Photonic Molecules
Reaction: Synthesis in Drug Discovery, the Short and Long of It
Room-Temperature Conversion of Methane Becomes True
Volume 3, Issue 1, Pages (July 2017)
Metal-Organic Polyhedra to Control the Conductance of a Lipid Membrane
Volume 3, Issue 5, Pages (November 2017)
Presentation transcript:

A Singlet Phosphinidene Stable at Room Temperature Liu Liu, David A. Ruiz, Dominik Munz, Guy Bertrand  Chem  Volume 1, Issue 1, Pages 147-153 (July 2016) DOI: 10.1016/j.chempr.2016.04.001 Copyright © 2016 Elsevier Inc. Terms and Conditions

Chem 2016 1, 147-153DOI: (10.1016/j.chempr.2016.04.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Schematic Representation of (Phosphino)phosphinidenes A Considered in This Study, Including A2 and A4, which Have Been Trapped and Isolated, Respectively Chem 2016 1, 147-153DOI: (10.1016/j.chempr.2016.04.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 Synthesis and Reactivity of phosphaketene 2a (Top) Synthesis of phosphaketene 2a (see also Figures S1–S3), which undergoes CO elimination under UV irradiation, generating transient phosphinidene A2. (Bottom) In the absence of trapping agent, A2 dimerizes to produce 3a (see also Figures S4–S6), whereas in the presence of 1-adamantyl isocyanide, the expected phosphinidene-isonitrile coupling product 4a is obtained (bottom left and right, respectively; see also Figures S7–S9). A molecular view of 3a and 4a in the solid state is shown; H atoms are omitted for clarity (orange, P; blue, N). Chem 2016 1, 147-153DOI: (10.1016/j.chempr.2016.04.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Synthesis and Reactivity of Bulky phosphaketene 2b (Top) Synthesis and reactivity of phosphinidene A4 (see also Figures S10–S29). (Bottom left) 31P NMR spectrum of A4 (asterisk denotes unidentified impurity; see also Figure S20). (Bottom right) Molecular view of 4c in the solid state; H atoms and solvent molecules are omitted for clarity (orange, P; blue, N). Chem 2016 1, 147-153DOI: (10.1016/j.chempr.2016.04.001) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Computational Analysis of phosphinidenes A (A and B) Optimized structures of A2 (A) and A4 (B) show the protection of the phosphinidene center by 2,6-bis[(4-tert-butylphenyl)methyl]-4-methylphenyl substituents (Ar**) (orange, P; blue, N). (C) HOMO of A2: in-plane P1-P2 π orbital. (D) HOMO-1 of A2: out-of-plane P1-P2 π orbital. (E) HOMO-8 of A2: P1-P2 σ-bonding orbital. (F) LUMO of A2: P1-P2 π*-antibonding orbital. (G) The four main resonance structures of A2 as predicted by natural resonance theory (NRT). (H) The two resonance structures of NHCs as predicted by NRT at the same level of theory. Chem 2016 1, 147-153DOI: (10.1016/j.chempr.2016.04.001) Copyright © 2016 Elsevier Inc. Terms and Conditions