Xiao Min Tong and Chii Dong Lin

Slides:



Advertisements
Similar presentations
Electron wavefunction in strong and ultra-strong laser field One- and two-dimensional ab initio simulations and models Jacek Matulewski Division of Collision.
Advertisements

High Intensity Laser Electron Scattering David D. Meyerhofer IEEE Journal of Quantum Electronics, Vol. 33, No. 11, November 1997.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
Imaginary time method and nonlinear ionization by powerful free electron lasers S.V. Popruzhenko Moscow Engineering Physics Institute, Moscow EMMI workshop.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
Understanding Strong Field Closed Loop Learning Control Experiments PRACQSYS August 2006.
Generation of short pulses
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Femtosecond laser pulse Attosecond pulse train Generation and Application of Attosecond pulse trains GenerationApplication Measure and control electron.
Excitation processes during strong- field ionization and dissociatation of molecules Grad students: Li Fang, Brad Moser Funding : NSF-AMO November 29,
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
Spectroscopy. Atoms and Light  Atomic electron energy levels are a source of discrete photon energies.  Change from a high to low energy state produces.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
Strong-field physics in the x-ray regime Louis DiMauro ITAMP FEL workshop June 21, 2006 fundamental studies of intense laser-atom interactions generation.
TOF Mass Spectrometer &
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
Extreme Light Infrastructure Workshop – Bucharest - September, 17, 2008 Cosmin Blaga The Dawn of Attophysics - First Steps Towards A Tabletop Attosecond.
Ions in Intense Femtosecond Laser Fields Jarlath McKenna MSci Project10th December 2001 Supervisor: Prof. Ian Williams.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
Why I never let go of my Ph.D. thesis research! Rhodes Scholars Symposium University of Illinois, Chicago March 28, 2012 Supported by: National Science.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
Femtosecond Dynamics of Molecules in Intense Laser Fields CPC2002 T.W. Schmidt 1, R.B. López-Martens 2, G.Roberts 3 University of Cambridge, UK 1. Universität.
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, Exploring atomic fragmentation with COLTRIMS.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Dynamics of clusters and molecules in strong electromagnetic fields: A TDDFT-MD approach Ionization Environment Time-resolved dynamics Laser Projectile.
Multiple-Cone Formation during the Femtosecond-Laser Pulse Propagation in Silica Kenichi Ishikawa *, Hiroshi Kumagai, and Katsumi Midorikawa Laser Technology.
typical kHz experiment
Ultrafast Laser Interactions with Atoms, Ions and Molecules
Photoelectron energy distribution for 1.6 eV photons xenon at W/cm 2 h “photon description” helium at W/cm 2 “dc-tunneling picture” strong-field.
Results using molecular targets Linear-circular comparison of the intense field ionization of simple molecular targets (N 2, CO 2 ): evidence of nonsequential.
PHYSICAL CONSEQUENCE:  electron capture results in odd harmonic photons. harmonic cutoff: (3U p + IP) rule !!  elastic scattering yields energetic (10U.
HPLUM 17 December 2003 Prof Ian Williams Dr B. Srigengan Mr M. Suresh Mr Jarlath McKenna Prof Roy Newell Dr Will Bryan Mrs Sarah Watson Miss Elizabeth.
Rydberg Series of C 60 Osnabrück, Germany March 2002 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine, Fritz Haber Center, Hebrew University.
Theory for Direct Frequency-Comb Spectroscopy Daniel Felinto and Carlos E.E. López 65 th International Symposium on Molecular Spectroscopy June 24, 2010.
Ionization in atomic and solid state physics. Paul Corkum Joint Attosecond Science Lab University of Ottawa and National Research Council of Canada Tunneling.
GRK-1203 Workshop Oelde Watching a laser pulse at work
N. Kabachnik Institute of Nuclear Physics, Moscow State University
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Tunable excitons in gated graphene systems
Yakup Boran Spring Modern Atomic Physics
Small fermionic systems : the common methods and challenges
LASER PHYSICS 2013 PRAGUE, CZECH REPUBLIC
Interaction of Intense Ultrashort Laser Fields with Xe, Xe+ and Xe++
G. Castiglia1, P. P. Corso1, R. Daniele1, E. Fiordilino1, F
Muhammed Sayrac Phys-689 Modern Atomic Physics Spring-2016
LOW FREQUENCY LIMIT OF LASER FIELDS
Fragmentation Dynamics of H2+ / D2+ Kansas State University
Wavelength-dependence of Momentum-Space Images
Diatomic molecules
Photoelectron diffraction from small molecules:
Learning Objectives LO 1.7 The student is able to describe the electronic structure of the atom, using PES data, ionization energy data, and/or Coulomb’s.
2D Momentum Spectra of the ATI Electrons by 10 fs Laser Pulses
Diagnosis of a High Harmonic Beam Using
Laser-assisted photoionization for attosecond pulse measurements
Nonlinear response of gated graphene in a strong radiation field
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
Strong field atomic ionization
Laser Assisted Charge transfer in He++ + H Collisions
High Harmonic Analysis Using a COLTRIMS Technique
AMO Early Science Capability
hep-ph Prog. Theor. Phys. 117 Takashi Shimomura (Saitama Univ.)
Workshop finale dei Progetti Grid del PON
Few-body quantum dynamics in strong fields:
Presentation transcript:

Xiao Min Tong and Chii Dong Lin Above-threshold-ionization (ATI) of atoms in an intense, few-cycle laser pulse Marlene Wickenhauser Collaborators: Xiao Min Tong and Chii Dong Lin

Schematic picture Calculation: atom laser pulse ionization of electron atom Ar laser pulse Calculation: = 10 fs = 400 - 800 nm Electron spectra 2D momentum distribution I ~ 2 x 1014 W/cm2

Motivation Recent experiments: MPI Heidelberg, KSU e- P (a.u.) atom -1.0 -0.5 0 0.5 1.0 A. Rudenko et al. J. Phys. B 37 L407 (2004) P|| (a.u.) P (a.u.) 0 0.2 0.4 atom 5 x 1014 W/cm2 800 nm Low energy spectra: -lots of structure -even in tunneling regime

Multiphoton ionization Introduction Tunneling ionization Multiphoton ionization Above-threshold-ionization (ATI) Keldysh parameter:

Typical ATI spectrum ħω ATI peaks Absorbed Photons 12 14 16 18 20 22 P. H. Bucksbaum PRA 37 3615 (1988) 12 14 16 18 20 22 ħω ħω ATI peaks 0 0.1 0.2 0.3 Ionization potential ponderomotive energy Electrons/eV 0 5 10 15 20 25 30 Energy (eV) Helium I= 2.3 x 1014 W/cm2 = 8 ps, 532 nm

Outline Theory Energy Spectra 2D electron-momentum distribution Projection on parallel momentum

Theory 1) Numerical solution of TDSE -Single active electron approximation -grid -Split operator method for time propagation 2) Strong field approximation (SFA) Neglect: -Coulomb field on ionized electrons -Depletion of ground state -Other bound states Dipole transition moment Laser-dressed energy

Energy spectrum SFA TDSE Argon I ~ 1.7 x 1014 W/cm2 = 400 nm 10 fs Energy (eV)

Electron spectra from a short pulse No well defined frequency & intensity time P (arb. unit) 0 0.5 1 0 2 4 6 8 Energy (eV)

Redefined Volkov phase Laser-dressed energy: energy shift: average=Up electron-field coupling Energy (eV) -No subpeaks -ATI peaks shifted

2D momentum Distribution - SFA Argon I ~ 1.7 x 1014 W/cm2 = 400 nm 10 fs P (a.u.) 0 0.3 0.6 -0.8 -0.4 0 0.4 0.8 P|| (a.u.) ATI peaks Subpeaks Parity Angular momentum 0 2 4 6 8 Energy (eV)

Comparison with TDSE P (a.u.) P|| (a.u.) SFA TDSE 0 0.3 0.6 0 0.3 0.6 0 0.3 0.6 P (a.u.) 0 0.3 0.6 TDSE -0.8 0.4 0 0.4 0.8 P|| (a.u.)

Intensity dependence Ar 400 nm Ip + Up threshold Channel closing: 6 ħω Ar: Ip = 15.76 eV 1.7 x 1014 W/cm2: Up= 2.55 eV Ip 6 ħω intensity P (a.u.) 1.7 x 1014 W/cm2 3.2 x 1014 W/cm2 0 0.3 0.6 -0.8 0.4 0 0.4 0.8 2.4 x 1014 W/cm2 3.9 x 1014 W/cm2 0 0.3 0.6 P|| (a.u.) -0.8 -0.4 0 0.4 0.8 -0.8 -0.4 0 0.4 0.8

Momentum projection e- Interesting points: atom P (arb. unit) Ne: 25 fs, 800 nm, I = 4 x 1014 W/cm2 Rudenko et al. J. Phys. B 37 L407 (2004) -1.0 -0.5 0 0.5 1.0 0 2 4 6 8 10 P (arb. unit) P|| (a.u.) atom Interesting points: Dip in contrast to ADK Neon, Helium: dip Argon: peak ~ 0.6

Explanation for dip in literature Rescattering: J. Chen et al, PRA 63 11404(R) (2000) Coulomb potential: K. Dimitriou et al, PRA 70 061401(R) (2004) Position of ATI peaks: (in tunneling regime) F. H. M. Faisal et al, J. Phys. B 38 L223 (2005) Freeman Resonance: A. Rudenko et al, J. Phys. B 37 L407 (2004)

Argon 400 nm 10 fs dip peak Multiphoton P|| (a.u.) P|| (a.u.) I = 1.7 x 1014 W/cm2 I = 3.9 x 1014 W/cm2 g ~ 1.76 g ~ 1.13 0 0.3 0.6 0 0.3 0.6 0 0.5 1 0 0.5 1 P|| (a.u.) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 P|| (a.u.) P|| (a.u.)

Argon 800 nm 10 fs dip peak Tunneling P|| (a.u.) P|| (a.u.) I = 1.65 x 1014 W/cm2 I = 1.8 x 1014 W/cm2 g ~ 0.89 g ~ 0.85 0 0.3 0.6 0 0.3 0.6 0 0.5 1 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 P|| (a.u.) P|| (a.u.)

Conclusion Subpeaks in ATI spectra from short pulses Explained structures in 2D momentum distribution Dip in parallel momentum: -Tunneling regime: ATI peaks -Multiphoton regime: Parity of first ATI peak -Coulomb effect not relevant -Longer pulses: Freeman resonances