تبدیل فوریه (Fourier Transform)

Slides:



Advertisements
Similar presentations
Queue theory.
Advertisements

Logic Block Architectures. 2 Crosspoint Solution  Requires the use of large amounts of programmable interconnect −  suffer from area-inefficiency 
Stranded Costs مقدمه 1 - آشنايی با پديده های غيرخطی ( ياد آوری و تکميل ) 2 - مبانی رياضی ( مهم )
سازگاري فرايندهاي يادگيري Consistency of Learning Processes ارائه دهنده : الهام باوفای حقیقی استاد درس : آقای دکتر شيري دانشگاه امير كبير دانشكده ‌ مهندسي.
دستور العمل نحوه محاسبه امتیاز مقالات ISI اعضای هیأت علمی دانشگاه صنعتی اصفهان بر اساس تعداد استنادات در پايگاه اسكاپوس شهریور ماه 1388 نفیسه دهقان.
ارائه روشي براي شناسايي کاراکترهاي دستنويس، برپايه شبکه LVQ.
طراحي و ساخت سيستم‌هاي تجارت الکترونيک ساخت سيستم‌هاي تجارت الکترونيک ECSE.
نمايش اعداد.
نام و نام خانوادگي : فريد ملازم 1 آزمايشکاه سيستم هاي هوشمند ( موضوع ارائه Process and Deployment Design.
نمايش اعداد.
مديريت پروژه‌هاي فناوري اطلاعات فرآيند مديريت پروژه-مرحله برنامه‌ريزي تخصيص منابع.
تعميم در يادگيري مبتني بر نمونه ها
In the name of God Sharif University of Technology, International Branch, Kish Island Dr. Mohsen Sadighi Moshkenani Chapter 12.
1 Binary storage & registers. CS 151 Binary Variables Recall that the two binary values have different names: –True/False –On/Off –Yes/No –1/0 We use.
نمايش اعداد علی عادلی.  مبنا ( base ): –مبناي r: ارقام محدود به [0, r-1]  دسيمال:(379) 10  باينري:( ) 2  اکتال:(372) 8  هگزادسيمال:(23D9F)
ساختارهاي تقسيم كار پروژه
 Hassan jamali In the name of God Grade: three CD شامل : مكالمه لغات جديد درس نقاط گرامري و تمرين است.
Solving problems by searching Chapter 3 Modified by Vali Derhami.
آرايه Array آرايه مجموعه اى از متغيرهاى از يك نوع است كه با يك نام مشترك تحت استفاده قرار مى گيرند. يك عنصر بخصوص در يك آرايه با يك index (انديس ) مورد.
روابط مجموعه ها سلیمی. دکتر سلیمانی. نظریه فازی در سال 1965 بوسیله یک دانشمند ایرانی بنام پروفسور لطفی زاده معرفی گردید. گرچه این نظریه در ابتدا با.
به نام خدا دانشگاه علمي كاربردي واحد 11 تهران محيط‌هاي چند رسانه‌اي ) اسلايد سوم ) E.Javanmard Website:
اسامي شناسه ها (Identifier names) اسامي متغيرها ، توابع ، برچسب ها (labels) وبقيه اشياء تعريف شده توسط كاربر در C ، شناسه ( identifier ) ناميده مي شود.
1 فصل دوم تبديلات. 2 فصل دوم سرفصل مطالب مقدمه ضرب بردارها دستگاه ‌ هاي مختصات دوران ‌ ها مختصات همگن دوران ‌ ها و انتقال ‌ ها تبديلات تركيبي همگن تبديل.
شرط و تصميم اصول كامپيوتر 1. 2 الگوريتم اقليدس E1: [find remainder] Divide m by n and let r be the remainder. Clearly, 0
Lecture: Linear systems and convolution
سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي- دکتر سید مجید اسما عیل زاده.
1 فصل سوم سينماتيك مستقيم. 2 محتواي فصل   تعريف مجموعه فازي   تابع عضويت   نمايش مجموعه هاي فازي   برش آلفا   متغيرهاي زباني   ساخت مجموعه.
اصول رنگ تجزيه نور سفيد توسط منشور.
Image Enhancement in the
Cost- Effectiveness Analysis
Information Retrieval
مدارهای منطقی فصل چهارم و پنجم - مدارهاي منطقي تركيبي ماجولي
اصول روان سنجی و روان آزمویی
1 قانون تشابه. 2 مشخصه هاي يك پمپ سانتريفوژ شامل هد، دبي، راندمان و توان با رابطه زير به هم مربوطند : كه در اين رابطه H هد پمپ، Q دبي، g شتاب جاذبه و.
نظریه رفتار برنامه ريزي شده Theory of Planned Behavior
تمرین هفتم بسم الله الرحمن الرحیم درس یادگیری ماشین محمدعلی کیوان راد
به نام خدا POWER SYSTEM ANALYSIS Ali Karimpour Associate Professor
به نام خدا درس: شیوه ارائه مطالب علمی و فنی موضوع: هوش تجاری (Business Intelligence) ارائه کننده :علی باقری.
آرايه ها و ساختارها.
آرايه ها.
ANOVA: Analysis Of Variance
ANOVA: Analysis Of Variance
نمايش معادلات فضاي حالت توسط فرمهاي كانوليكال
وحید حقيقت دوست دانشکده فنی و مهندسی دانشگاه شاهد
Quick Sort مرتب سازي سريع.
تکنیک دیماتل DEMATEL: decision making trial and evaluation laboratory.
دکتر حسين بلندي/ دکتر سید مجید اسماعیل زاده / دکتر بهمن قربانی واقعی
نمايش اعداد در کامپيوتر چهار عمل اصلي
Similarity transformation
گزگز و خواب رفتگي انگشتان دست
سيستمهاي اطلاعات مديريت
X-ray image Formation Radiography Film.
فاطمه بهمن زیاری ، مریم امینی مدل های خطی 1 بهمن1393
مدلسازي تجربي – تخمين پارامتر
هیدرولیک جریان در کانالهای باز
عمليات آهنگري.
Linear Control Hossein Moeinkhah Assistant Professor
نظریه رفتار برنامه ريزي شده Theory of Planned Behavior
تحليل عملكرد يك سيستم تصويربرداري ديجيتال
روش های تحقیق در مدیریّت
مدلسازي تجربي – تخمين پارامتر
مثال : فلوچارتي رسم كنيد كه دو عدد از ورودي دريافت كرده بزرگترين عدد
توزیع میانگین نمونه سعید موسوی.
گزارش کار آزمايشگاه مکانيک خاک
تبديل همانندي در معادلات حالت و خروجي P ماتريس تبديل ثابت و ناويژه
گروه كارشناسي ارشد مديريت فنآوري اطلاعات(واحد الكترونيكي تهران)
مباني كامپيوتر و برنامه سازي Basics of Computer and Programming
مباني كامپيوتر و برنامه سازي Basics of Computer and Programming
Graph Theory in Circuit-1
طبقه بندی باکتریهای بیماریزا. هدف قرار دادن باكتريها در طبقات يا Taxa هاي مختلف نامگذاري آنها تعيين هويت (Identification)
Presentation transcript:

تبدیل فوریه (Fourier Transform) پس ازعبور نور از يك منشور ‍(Prism) يا diffraction grating، نور به اجزا مختلف با فركانس هاي خاص خود (مونوكروماتيك) تجزيه مي شود. اين امر مشابه تبديل فوريه (FT) است. مي توان يــك سيگنال يك بعدي را بصورت مجموعه اي از امواج سينوسي (با فركانس و دامنه متفاوت) نشان داد. هرچه فركانس هاي بيشتري را محاسبه نماييم تخمين فوريه يك سيگنال دقيق تر مي شود و اطلاعات بيشتري درباره شكل اوليه آن بدست مي آيد.

تبدیل فوریه (Fourier Transform) FT مبتني بر اين واقعيت است كه سيگنال دوره اي (Periodic) شامل بي نهايت سيگنال هاي سينوسي وزن دار با فــركانس هاي متفاوت است. اين فركانس ها عبارتند از فركانس پايه (frequency Fundamental ) و مضارب درست اين فركانس پايه. در تبديل فوريه، توابع پايه‌اي هم جهت(orthonormal basis function)، امواج سينوسي با فركانس‌هاي متفاوت هسنند كه در فضاي بي‌نهايت تعريف شده‌اند

تبدیل فوریه (Fourier Transform) هر يك از ضرايب حاصل در تبديل فوريه توسط ضرب نقطه‌اي(inner product) تابع ورودي و يكي از توابع پايه‌اي(basis function) بدست مي‌آيد. اين ضرايب، در واقع، درجه شباهت بين تابع ورودي و تابع پايه‌اي مورد نظر را نشان مي‌دهد. اگر دو تابع پايه‌اي بر هم عمود (orthogonal) باشند، حاصل‌ضرب نقطه‌اي آنها صفر و لذا نشان مي‌دهد كه آن‌دو با هم شبيه نيستند. بنابراين اگر سيگنال يا تصوير ورودي از اجزايي تشكيل شده باشد كه يك يا چند تابع پايه‌اي داشته باشد، سپس آن يك يا چند ضريب بزرگ و ديگر ضرايب كوچك هستند.

Inverse Fouries Transform در تبديل معكوس، سيگنال يا تصوير اوليه توسط مجموع توابع پايه‌اي (در فركانس‌هاي مختلف) كه تحت تاثير وزن ضرايب تبديل قرار گرفته‌اند، بازسازي مي‌شود. بنابراين اگر يك سيگنال يا تصوير از اجزائي شبيه به تعداد معدودي از توابع پايه‌اي تشكيل شده باشد، بسياري از عبارات موجود در اين جمع (ضرايب تبديل) حذف شده و فقط تعدادي از اين ضرايب تبديل، تقويت اجزايي از تصوير را كه شبيه به توابع مربوطه پايه‌اي است انجام داده و تصوير را مي‌سازند.

Advantage وقتي تبديل فوريه يك سيگنال يا تصوير بدست مي آيد، اعمال متعدد رياضي برروي آنها قابل انجام است. در فضاي فركانسي انجام اين عمليات رياضي از انجام آنها در فضاي مكاني به مراتب ساده تر است. بعنوان مثال عمل Convolution به يك ضرب ساده تبديل مــي شود و روش هاي پردازشي ديگر نيز مانند Correlation، differentiation، integration و Interpolation به سهولت انجام مي شوند.

1D Fourier Transform تبديل فوريه يك تابع يك بعدي ( x ) f بصورت زير تعريف مي شود. x بـعنــــــوان يـك مـتغيــر در فضاي واقـعـي ( real Space ) و U در فضاي فركـانس (Frequency Space) در نظر گرفته مــــي شود و ( x ) f نـشان دهنده يك پــروسـه فيـزيكـي است. ( x ) f مــعمـولاً band Limited است يعني پهناي باند آن 2B است. f(x)¹ 0 for < B otherwise f(x) = 0

Fourier Transform of f(t) Real part of this Function is:

MX (Real) MY (Imaginary)

MX (Real) MY (Imaginary)

2D Fourier Transfrom

Discrete Fourier Transform تـــبــديـــل فـــوريـــه در مــســا ئــل طبــيــعــي و عــادي بـه صـورت يك تخميـن تحليلي ريــاضـي (Analytic expression) بكار مي رود. بــه ايــن تخمين، تبديل فوريـــه گسسته ( Discrete Fourier Transform ) مي گويند. DFT، نسخه نمونه برداري شده FT (در گستره بي نهايت) است كه از طريق تكرار replication)) بخشي از آن در محدوده نمونه برداري شده بدست مي آيد. لذا اطلاعات در فضاي فركانسي بصورت مجموعه ء گسسته نقاط در نظر گرفته مي شود. Xj = jDx, j=0,1,2,….,N-1 Un = nDU, n=0,1,2,….,M-1