Geometreg Cyfesurynnau Cartesaidd

Slides:



Advertisements
Similar presentations
Co-ordinate Geometry III
Advertisements

Question: Find the equation of a line that is parallel to the equation: 3x + 2y = 18.
COORDINATE GEOMETRY Straight Lines The equations of straight lines come in two forms: 1.y = mx + c, where m is the gradient and c is the y-intercept. 2.ax.
Coordinate Geometry Learning Outcomes
Co-ordinate Geometry. What are the equations of these lines. Write in the form ax + by + c = 0 1)Passes though (2,5) and gradient 6 2)Passes through (-3,2)
Mathematics. Session Three Dimensional Geometry–1(Straight Line)
Straight Lines. I. Graphing Straight Lines 1. Horizontal Line y = c Example: y = 5 We graph a horizontal line through the point (0,c), for this example,
Edrych ar y sêr. 4 Y Daith © The Collective Worship Resource - The National Society and The Culham Institute.
Objective: To write equations of parallel and perpendicular lines.
E O Jones ©2011. Nodau Edrychwch ar y canlyniadau dysgu. Cyflwyno Fectorau. Sut i dynnu diagram fector. Amcan Nodi gofynion yr uned. Cael rhai cysyniadau.
Y dosraniad Poisson fel brasamcan i’r Binomial. Pan mae’r nifer y treialon mewn dosraniad Binomial yn fawr iawn, a’r tebygolrwydd i lwyddo yn fach iawn,
Straight Line Graph revision
Straight Line Graph revision
7.1 – Cartesian Co-ordinate System & Linear Equations in Two Variables
Co-ordinate Geometry in the (x, y) Plane.
Straight Lines Objectives:
Llysgenhadon Cymunedol | Community Ambassadors
Y Dosraniad Poisson The Poisson Distribution
ALGEBRA II HONORS/GIFTED - SECTION 2-8 (Two-Variable Inequalities)
Coordinate Plane Sections 1.3,
Gweithdy ar Sgiliau Astudio
Ffwythiant Dosraniad Cronnus F(x)
Arolwg Chwaraeon Ysgol ac Arolwg Chwaraeon AB 2015
Tuesday, December 04, 2018 Geometry Revision!.
Algebra 1 Section 6.5.
Linear Equations in Two Variables
Coordinate Geometry , Distance and Midpoint
Ffwythiannau Cyfansawdd a Gwrthdro
Coordinate Geometry , Distance and Midpoint
Logarithmau 2 Logarithms /adolygumathemateg.
Algebra 1 Section 5.1.
Graphing in the Coordinate Plane
Graphing Linear Functions
Gwers 12 Dull Ymchwil Cynradd Arall
3.1 Reading Graphs; Linear Equations in Two Variables
Mathau o Gyfresi Types of /adolygumathemateg.
The Distance to the Horizon
Circles 10-2 Warm Up Lesson Presentation Lesson Quiz Holt Algebra2.
Braslunio Cromlinau Curve /adolygumathemateg.
Logarithmau 3 Logarithms /adolygumathemateg.
Ymholiad Gwaith Maes TGAU
AS-Level Maths: Core 1 for Edexcel
TRYDAN YN Y GWAITHLE Introduction
CA3 – Gwneud Dewisiadau ar gyfer CA4 (2)
Straight Line Graphs Lesson Objectives:
Beth yw gwaith gweddus?.
Sally Holland yw Comisiynydd Plant Cymru
Points and their Coordinates
Calculus and analytic geometry
Swyddogion Heddlu Cymunedol Ysgolion
Do Not Go Gentle Into That Good Night
Coordinate Geometry , Distance and Midpoint
Fformiwlâu Adiad Trigonometreg
The distance between two points
Fectorau /adolygumathemateg.
Cyfres Geometrig Geometric /adolygumathemateg.
Trawsffurfiadau Graffiau
Gwerthoedd Arbennig Sin, Cos a Tan
Unit 5 Geometric and Algebraic Connections
Uned 1 Taflen Gymorth/PowerPoint ar Gwestiynau Arholiad
COMPASS Practice Test 16.
Points and their Coordinates
Parallel and Perpendicular Lines
Prosiect Sgiliau Hanfodol Hyblyg
Iesu Grist yw’r Alffa “Wedyn ar ôl bwyta swper gafaelodd yn y cwpan eto, a dweud, "Y cwpan yma ydy'r ymrwymiad newydd drwy fy ngwaed i, sy’n cael ei dywallt.
Presentation transcript:

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry @mathemateg /adolygumathemateg

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ganwyd René Descartes ar y 15fed o Fawrth, 1596, yn Ffrainc. Defnyddiodd graffiau er mwyn cysylltu algebra efo geometreg. Mae graffiau’n defnyddio echelinau-𝑥 ag 𝑦 yn cael eu galw’n graffiau Cartesaidd, ar ei ôl. René Descartes was born on the 15th of March, 1596, in France. He used graphs in order to connect algebra to geometry. Graphs that use 𝑥 and 𝑦 axes are named Cartesian graphs.

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ystyriwch unrhyw ddau bwynt 𝐴= 𝑥 1 , 𝑦 1 , 𝐵= 𝑥 2 , 𝑦 2 mewn plân. Consider any two points 𝐴= 𝑥 1 , 𝑦 1 , 𝐵= 𝑥 2 , 𝑦 2 in a plane. https://ggbm.at/vm8cgH6W Y pellter rhwng 𝐴 a 𝐵 yw 𝑥 2 − 𝑥 1 2 + 𝑦 2 − 𝑦 1 2 . The distance between 𝐴 and 𝐵 is 𝑥 2 − 𝑥 1 2 + 𝑦 2 − 𝑦 1 2 . Graddiant y llinell 𝐴𝐵 yw 𝑦 2 − 𝑦 1 𝑥 2 − 𝑥 1 . The gradient of the line 𝐴𝐵 is 𝑦 2 − 𝑦 1 𝑥 2 − 𝑥 1 . Canolbwynt y llinell 𝐴𝐵 yw 𝑥 1 + 𝑥 2 2 , 𝑦 1 + 𝑦 2 2 . The mid-point of the line 𝐴𝐵 is 𝑥 1 + 𝑥 2 2 , 𝑦 1 + 𝑦 2 2 .

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ymarfer 1 / Exercise 1 Ar gyfer y parau o bwyntiau canlynol, darganfyddwch (i) y pellter rhwng y ddau bwynt; (ii) graddiant y llinell sy’n cysylltu’r ddau bwynt; (iii) canolbwynt y ddau bwynt. For the following pairs of points, find (i) the distance between the two points; (ii) the gradient of the line connecting the two points; (iii) the mid-point of the two points. (a) 𝐴(2, 1), 𝐵(6, 4). (b) 𝐴(3, 1), 𝐵(4, 6). (c) 𝐴(−3,2), 𝐵(9, 4). (ch) 𝐴(2, 5), 𝐵(−5,−3). (d) 𝐴(−10,−1), 𝐵(−2,−5).

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Atebion / Answers (a) (i) 5 (ii) 3 4 (iii) (4, 2.5) (b) (i) 26 (ii) 5 (iii) (3.5, 3.5) (c) (i) 2 37 (ii) 1 6 (iii) (3, 3) (ch) (i) 113 (ii) 8 7 (iii) (–1.5, 1) (d) (i) 4 5 (ii) − 1 2 (iii) (–6, –3)

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ymarfer 2 / Exercise 2 Cwblhewch y tabl canlynol. Complete the following table. 𝑨 𝑩 Canolbwynt / Mid-point of 𝑨𝑩 (2, 8) (8, 14) (6, 10) (10, 12) (20, 14) (10, 5) (–2, 5) (5, 3) (7, –8) (14, –16) (–8, –5) (–3, 4) (–5, 1) (13, –2)

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Atebion / Answers Cwblhewch y tabl canlynol. Complete the following table. 𝑨 𝑩 Canolbwynt / Mid-point of 𝑨𝑩 (2, 8) (8, 14) (5, 11) (6, 10) (14, 14) (10, 12) (0, –4) (20, 14) (10, 5) (–2, 5) (12, 1) (5, 3) (21, –24) (7, –8) (14, –16) (–8, –5) (2, 13) (–3, 4) (31, –5) (–5, 1) (13, –2)

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ystyriwch unrhyw ddau bwynt 𝐴= 𝑥 1 , 𝑦 1 , 𝐵= 𝑥 2 , 𝑦 2 mewn plân. Mae’r ddau bwynt yma, os yn wahanol, yn diffinio llinell syth yn y plân. Consider any two points 𝐴= 𝑥 1 , 𝑦 1 , 𝐵= 𝑥 2 , 𝑦 2 in a plane. These two points, if different, define a line on the plane. https://ggbm.at/qjpfmrra Mae’n bosib ysgrifennu hafaliad y llinell syth mewn tair ffordd wahanol. It is possible to write the equation of the straight line in three different ways. 𝑦=𝑚𝑥+𝑐 𝑎𝑥+𝑏𝑦+𝑐=0 𝑦− 𝑦 1 =𝑚(𝑥− 𝑥 1 )

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ymarfer 3 / Exercise 3 Ym mhob un o’r canlynol, diffinir llinell trwy roi un pwynt ar y llinell a graddiant y llinell. Ysgrifennwch hafaliad y llinell ym mhob un o’r tair ffordd ar y sleid blaenorol. In each of the following, a line is defined by a point on the line and its gradient. Write the equation of the line in each of the three forms shown on the previous slide. (a) 𝐴 4, 6 , 𝑚=3. (b) 𝐴 9, 15 , 𝑚=−2. (c) 𝐴 −2,4 , 𝑚=5. (ch) 𝐴 6,−2 , 𝑚=0.5. (d) 𝐴 −5,−10 , 𝑚=−0.2.

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Atebion / Answers 𝒚=𝒎𝒙+𝒄 𝒂𝒙+𝒃𝒚+𝒄=0 𝒚− 𝒚 𝟏 =𝒎(𝒙− 𝒙 𝟏 ) (a) 𝑦=3𝑥−6 𝑦−3𝑥+6=0 𝑦−6=3(𝑥−4) (b) 𝑦=−2𝑥+33 𝑦+2𝑥−33=0 𝑦−15=−2(𝑥−9) (c) 𝑦=5𝑥+14 𝑦−5𝑥−14=0 𝑦−4=5(𝑥+2) (ch) 𝑦=0.5𝑥−5 𝑦−0.5𝑥+5=0 neu/𝑜𝑟 2𝑦−𝑥+10=0 𝑦+2=0.5(𝑥−6) (d) 𝑦=−0.2𝑥−11 𝑦+0.2𝑥+11=0 neu/𝑜𝑟 5𝑦+𝑥+55=0 𝑦+10=−0.2(𝑥+5)

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Gadewch i’r llinellau 𝐿 1 ag 𝐿 2 gael graddiannau 𝑚 1 ag 𝑚 2 , yn ôl eu trefn. Let the lines 𝐿 1 and 𝐿 2 have gradients 𝑚 1 and 𝑚 2 , respectively. Os yw 𝐿 1 ag 𝐿 2 yn baralel, yna mae 𝑚 1 = 𝑚 2 . If 𝐿 1 and 𝐿 2 are parallel, then 𝑚 1 = 𝑚 2 . Os yw 𝐿 1 ag 𝐿 2 yn berpendicwlar, yna mae 𝑚 1 𝑚 2 =−1. Neu, mae’n bosib dweud bod un graddiant yn negatif cilydd y llall: 𝑚 1 =− 1 𝑚 2 a 𝑚 2 =− 1 𝑚 1 . If 𝐿 1 and 𝐿 2 are perpendicular, then 𝑚 1 𝑚 2 =−1. Or, it is possible to say that one gradient is the negative reciprocal of the other: 𝑚 1 =− 1 𝑚 2 and 𝑚 2 =− 1 𝑚 1 .

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ymarfer 4 / Exercise 4 Mae’r llinell syth 𝐿 1 yn cysylltu’r pwyntiau (–5, 12) a (8, 6). Mae’r llinell syth 𝐿 2 yn baralel i 𝐿 1 . Mae’r llinell syth 𝐿 3 yn berpendicwlar i 𝐿 1 . Beth yw graddiannau 𝐿 2 ag 𝐿 3 ? The straight line 𝐿 1 connects the points (–5, 12) and (8, 6). The straight line 𝐿 2 is parallel to 𝐿 1 . The straight line 𝐿 3 is perpendicular to 𝐿 1 . What are the gradients of 𝐿 2 and 𝐿 3 ?

Geometreg Cyfesurynnau Cartesaidd Cartesian Co-ordinate Geometry Ateb / Answer Mae’r llinell syth 𝐿 1 yn cysylltu’r pwyntiau (–5, 12) a (8, 6). Mae’r llinell syth 𝐿 2 yn baralel i 𝐿 1 . Mae’r llinell syth 𝐿 3 yn berpendicwlar i 𝐿 1 . Beth yw graddiannau 𝐿 2 ag 𝐿 3 ? The straight line 𝐿 1 connects the points (–5, 12) and (8, 6). The straight line 𝐿 2 is parallel to 𝐿 1 . The straight line 𝐿 3 is perpendicular to 𝐿 1 . What are the gradients of 𝐿 2 and 𝐿 3 ? Graddiant 𝐿 2 yw − 6 13 . Graddiant 𝐿 3 yw 13 6 . The gradient of 𝐿 2 is − 6 13 . The gradient of 𝐿 3 is 13 6 .