Sensitivity analysis in burnup calculations with Monte Carlo

Slides:



Advertisements
Similar presentations
1 Modal methods for 3D heterogeneous neutronics core calculations using the mixed dual solver MINOS. Application to complex geometries and parallel processing.
Advertisements

Combined evaluation of PFNS for 235 U(n th,f), 239 Pu(n th,f), 233 U(n th,f) and 252 Cf(sf) (in progress) V.G. Pronyaev Institute of Physics.
EMERALD1: A Systematic Study of Cross Section Library Based Discrepancies in LWR Criticality Calculations Jaakko Leppänen Technical Research Centre of.
Total Monte Carlo and related applications of the TALYS code system Arjan Koning NRG Petten, the Netherlands Technical Meeting on Neutron Cross- Section.
Neutronic simulation of a European Pressurised Reactor O.E. Montwedi, V. Naicker School of Mechanical and Nuclear Engineering North-West University Energy.
Monte Carlo Simulation of Interacting Electron Models by a New Determinant Approach Mucheng Zhang (Under the direction of Robert W. Robinson and Heinz-Bernd.
А Е Ц “К О З Л О Д У Й” - Е А Д N P P K O Z L O D U Y – P L C 17 th Symposium of AER Y alta, Crimea, September 24-28, 2007 WWER-1000 SPENT FUEL NUCLIDE.
Evaluation and Use of the Prompt Fission Neutron Spectrum and Spectra Covariance Matrices in Criticality and Shielding I. Kodeli1, A. Trkov1, R. Capote2,
20 F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST REACTORS R. Coulon, S. Normand, M. Michel, L. Barbot, T. Domenech, K. Boudergui, J-M Bourbotte, V.
Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques.
Logo. ﴿قَالُواْ سُبْحَانَكَ لاَعِلْمَ لَنَا إِلاَّ مَاعَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ﴾ بسم الله الرحمن الرحيم.
Quantum Monte-Carlo for Non-Markovian Dynamics Collaborator : Denis Lacroix Guillaume Hupin GANIL, Caen FRANCE  Exact  TCL2 (perturbation)  TCL4  NZ2.
MA and LLFP Transmutation Performance Assessment in the MYRRHA eXperimental ADS P&T: 8th IEM, Las Vegas, Nevada, USA November 9-11, 2004 E. Malambu, W.
Beta Delayed Neutron Covariances Tim Johnson, Libby McCutchan, Alejandro Sonzogni National Nuclear Data Center.
1 International VERCORS Seminar, October 15-16th, 2007 – Gréoux les Bains, France Volatile FP release from VERCORS tests Preamble :  What have we learnt.
A chaotic collection of thoughts on stochastic transport what are the issues that M3D must consider to accurately determine heat transport which analytical.
Efforts in Russia V. Sinev Kurchatov Institute. Plan of talk Rovno experiments at th On the determination of the reactor fuel isotopic content by.
UAM-2006, Pisa, 28 April Sensitivity / Uncertainty Analysis Tools Available from the NEA Data Bank E. Sartori, Ivo Kodeli.
D J Coates, G T Parks Department of Engineering, University of Cambridge, UK Actinide Evolution and Equilibrium in Fast Thorium Reactors UNTF 2010 University.
Lesson 4: Computer method overview
FAST MOLTEN SALT REACTOR –TRANSMUTER FOR CLOSING NUCLEAR FUEL CYCLE ON MINOR ACTINIDES A.Dudnikov, P.Alekseev, S.Subbotin.
AERB Safety Research Institute 1 TIC Benchmark Analysis Subrata Bera Safety Research Institute (SRI) Atomic Energy Regulatory Board (AERB) Kalpakkam –
USE OF THE AXIAL BURNUP PROFILE AT THE NUCLEAR SAFETY ANALYSIS OF THE VVER-1000 SPENT FUEL STORAGE FACILITY IN UKRAINE Olena Dudka, Yevgen Bilodid, Iurii.
Lesson 2: MAGICMERV  Get SCALE  Thinking like a neutron  MAGICMERV.
Characteristics of Transmutation Reactor Based on LAR Tokamak Neutron Source B.G. Hong Chonbuk National University.
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh).
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP , A. Borella1 Monte Carlo methods.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Nuclear Engineering Division Argonne National Laboratory.
Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech Republic Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical.
Characterization of reactor fuel burn-up from antineutrino spectral distortions E. Kemp, L.F. G. Gonzalez, T.J.C. Bezerra and B. Miguez for the ANGRA Collaboration.
1 FRENCH ATOMIC ENERGY COMMISION (CEA) - NUCLEAR ENERGY DIVISION Nuclear Data Needs, SG26, NEA data bank, 3 May 2006CEA/DER Cadarache Centre Gérald Rimpault.
Study on the Neutronic Characteristics of Subcritical Reactors Driven by an Accelerated Pulsed Proton Beam Ali Ahmad.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Modern , d, p, n-Induced Activation Transmutation Systems EURATOM/CCFE.
Comparison of deterministic and Monte Carlo sensitivity analysis including SAD/SED Ivo Kodeli, SG39 Meeting, NEA, Dec. 4, 2015.
2016 January1 Nuclear Options for the Future B. Rouben McMaster University EP4P03_6P03 Nuclear Power Plant Operation 2016 January-April.
D J Coates, G T Parks Department of Engineering, University of Cambridge, UK 3 rd Year PhD student Actinide Breeding and Reactivity Variation in a Thermal.
Non-equilibrium Antineutrino spectrum from a Nuclear reactor We consider the evolution of the reactor antineutrino energy spectrum during the periods of.
Process modelling and optimization aid FONTEIX Christian Professor of Chemical Engineering Polytechnical National Institute of Lorraine Chemical Engineering.
1st Meeting of WPEC Subgroup 26 (May 3, 2006) Proposed Agenda 9:00-9:30 Objectives of the meeting, methodology and relation with HPRL (M.Salvatores, G.Palmiotti,
Workshop SERPENT and Multiphysics – February 2015 E. MERLE-LUCOTTE Professor at CNRS-IN2P3-LPSC / Grenoble INP - PHELMA For the MSFR team - M. ALLIBERT,
NEAR-COMPLETE TRANSURANIC WASTE INCINERATION IN THORIUM-FUELLED LIGHT WATER REACTORS Ben Lindley.
D J Coates, G T Parks Department of Engineering, University of Cambridge, UK Actinide Evolution and Equilibrium in Thorium Reactors ThorEA Workshop Trinity.
M-C simulation of reactor e flux;
INSTITUTE OF NUCLEAR SCIENCE AND TECHNOLOGY
Reactor anti-neutrinos and neutrinos
Study on Neutronics of plutonium and Minor Actinides Transmutation in Accelerator Driven System Reactor By Amer Ahmed Abdullah Al-Qaaod Ph.D student Physics.
Numerical models of PWR reactor for Monte Carlo neutron transport and burnup simulations Mikołaj Oettingen, Ph.D. Department of Nuclear Energy, Faculty.
Monte Carlo methods 10/20/11.
Measurement of the fission cross-section of 240Pu and 242Pu at CERN’s n_TOF facility CERN-INTC , INTC-P-280 Spokespersons: M. Calviani (CERN),
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Bayesian Monte-Carlo and Experimental Uncertainties
Global Nuclear Energy Partnership [GNEP]
Paul Scherrer Institut
M-C simulation of reactor e flux;
AMSTRAMGRAM AMélioration de la Section Thermique de capture l’Américium 241 par Mesure intéGRAle dans MINERVE P. Leconte CEA (SPRC/LEPh) A. Gruel, B.
Overview of Serpent related activities at HZDR E. Fridman
Aim # 26: How do we calculate the rate of radioactive decay?
Nodal Methods for Core Neutron Diffusion Calculations
B Tagging Efficiency and Mistag Rate Measurement in ATLAS
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Jordan University of Science and Technology
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Pebble Bed Reactors for Once Trough Nuclear Transmutation
Safety Demonstration of Advanced Water Cooled Nuclear Power Plants
Improvements of Nuclear Fuel Cycle Simulation System (NFCSS) at IAEA
3rd Workshop on dynamic fuel cycle Timothée Kooyman, DEN,DR,SPRC,LE2C
Monte Carlo Simulation Applied to Finnish Inventory Uncertainty
27th CMS User’s Group Meeting
Introduction to the session Reactor Models
Presentation transcript:

Sensitivity analysis in burnup calculations with Monte Carlo A. Bidaud et al.

Total Monte Carlo Method

Uncertainty methods comparison GPT + covariances (deterministic ?) Total Monte Carlo (MC ?) Steady state calculations sensitivities Rare but for keff (ex : SCALE/TSUNAMI3D) ! Potential 0+ Ex : DRAGON (thanks EDF funded PhD @ LPSC) ! CASMO (M. Pusa @ VTT), ERANOS… ! SERPENT (THX Manuele) Steady state calculations uncertainties Potential +++ ! Potential ++ (limited by stats) Evolution calculations sensitivities Potential +++ ! Potential 0+ Fully coupled Nuclide/neutron (Almost never done) ! ! Evolution calculations uncertainties Potential +++ ! Potential ++(limited by stats) Practical 0 ! Practical ++ Keff uncertaintyfrom Pu239 ND uncertainties P. Sabouri et al. Nuclear Data Sheets. Volume 118, April 2014, Pages 523–526

Meeting with the stars Direct BU equation A constant matrix over time intervals integrating ΣΦ calculated with constant flux (but renormalized for constant power at time intervals Be N*(t) = the probability for nucleus Ni tdto become a target nucleus at t=tfinal Burn up equation with inverted time arrow

Comparison of Adjoint method with direct calculations Final quantities can be related to initial quantities Direct vs Perturbation (PWR UOX Geometry) : Application = Finding the origin of used fuel nuclides 233U 234U 235U 236U 238U 237Np 238Np 239Np 236Pu 237Pu 238Pu 239Pu 240Pu 241Pu 242Pu 241Am 242Am* 243Am 243Cm 244Cm 245Cm U235 0,83 0,81 1,00 0,00 0,85 0,84 0,72 0,01 U238 0,17 0,19 0,15 0,16 0,28 0,99

Sensitivities to initial conditions GPT/MURE GPT/DRAGON 233U 6,80E-01 4,31E-01 234U 1,22E+00 1,65E+00 235U 1,89E-04 1,83E-04 236U -3,08E-03 -3,13E-03 238U 9,90E-01 9,89E-01 237Np 1,17E+00 2,41E+00 238Np -7,66E-01 -6,85E-01 239Np 1,68E+00 1,66E+00 236Pu 9,11E-01 2,21E+00 237Pu 3,62E+00 9,82E-01 238Pu 2,82E+00 5,30E+00 239Pu 9,04E-01 9,16E-01 240Pu 1,26E+00 241Pu 1,42E+00 1,41E+00 242Pu 1,01E+01 1,09E+01 241Am 1,16E+00 1,19E+00 242Am* 9,93E-01 1,00E+00 243Am 1,02E+01 9,81E+00 243Cm 3,27E+00 3,11E+00 244Cm 1,33E+02 3,86E+01 245Cm 3,87E+00 3,56E+00 GPT vs direct (CI U8+1%) OK for U8 and direct daughters (U8, Pu9, Am1) Sensitivities >0,1 are bolded NOT a statistical effect (cf Dragon) Pu241 Daughters catastrophy Spectral changes change everything

U235 catastrophy Ratio GPT/Direct GPT/MURE GPT/DRAGON 233U 1,28E+00 5,06E-01 234U 9,33E-01 8,71E-01 235U 4,73E-01 4,83E-01 236U 1,16E+00 238U 2,34E-03 3,86E-03 237Np 1,72E+00 1,38E+00 238Np 6,45E+00 2,68E+00 239Np -6,92E-04 -7,76E-04 236Pu 1,98E+00 1,33E+00 237Pu 2,34E+00 1,74E+00 238Pu 3,64E+00 1,94E+00 239Pu 2,79E-02 2,49E-02 240Pu -4,74E-02 -4,69E-02 241Pu 5,36E-02 2,82E-02 242Pu -2,60E-03 -2,79E-03 241Am 1,26E-02 8,90E-03 242Am* 6,17E-03 4,34E-03 243Am -1,23E-03 -1,48E-03 243Cm -2,42E-03 -2,71E-03 244Cm -5,67E-04 -6,67E-04 245Cm -4,37E-04 -6,99E-04 XS decreases by 3% if U235 increased by 5%

Is it better in fast spectrum ? XS believed to be less inventory dependent MOX fuel, breeder in infinite lattice geometries Globaly : weak sensitivities because breeder with divertified initial fuel (many isotopes).

Intial fuel sensitivities in SFR - Na pu9 pu0 PU1 Pu2 am241 233U -3,19E+00 -1,70E+03 -7,54E+02 -5,01E+01 -7,11E+05 -2,96E+01 234U 3,04E+01 2,71E+02 4,86E+01 4,89E+00 4,98E+03 7,58E-01 235U 1,09E+02 6,76E+01 5,07E+04 8,24E+03 3,15E+06 4,74E+01 236U -2,67E+01 -9,84E+01 1,90E-01 -3,19E+04 -1,20E+04 -1,56E+02 238U 1,01E+00 2,07E+09 9,36E+06 2,94E+06 8,42E+03 2,14E+05 237Np 8,63E-01 -3,17E+03 -1,95E+01 -4,86E+00 -1,09E+05 -3,71E+00 238Np 5,33E-01 -9,50E+03 -5,50E+01 -1,42E+01 -1,51E+05 -3,67E+00 239Np 7,26E-01 -2,03E+09 -7,26E+06 -8,09E+05 -3,07E+03 2,49E+04 236Pu 6,96E-01 -1,26E+04 -6,78E+01 -1,58E+01 -4,69E+05 -9,89E+00 237Pu 4,03E-01 -1,30E+04 -6,00E+01 -8,94E+00 -5,29E+04 -4,33E+00 238Pu 1,09E+01 1,53E+02 1,23E+01 2,08E+00 1,45E+03 7,44E-01 239Pu 8,98E-01 9,23E-01 -7,09E+03 -5,73E+02 -1,06E+03 3,23E+00 240Pu 6,99E-02 7,35E-01 9,96E-01 -8,18E+01 -1,69E+01 -1,33E+02 241Pu 4,11E+00 4,87E+00 1,00E+00 1,07E+01 1,89E+02 242Pu 6,23E+02 1,56E+02 1,46E+00 9,67E-01 1,02E+00 1,72E-01 241Am 2,18E+02 6,22E+01 1,27E+00 1,06E+00 1,40E+02 242Am* -3,39E+03 -6,97E+02 -1,64E+00 6,78E-01 -1,26E+03 9,95E-01 243Am -7,84E+04 -1,64E+04 -5,60E+01 -5,63E+00 9,88E-01 -1,63E-01 243Cm -1,78E+04 -2,72E+03 -8,68E+00 4,19E-02 -2,58E+02 9,77E-01 244Cm -4,72E+05 -8,32E+04 -2,35E+02 -1,94E+01 9,56E-01 -5,91E-01 245Cm -1,63E+06 -2,42E+05 -5,83E+02 -4,00E+01 9,33E-01 -1,27E+00

Exemple of accident : Cm243 from Pu241 XS decreases by 0,15 when Pu 241 increases by 1

Are these facts decreasing or increasing ND impact ? Conclusions Scientific evidence : coupling neutron and nuclide field is mandatory (even in fast spectrum) Tools available : Burn up equation GPT is available in MureGui Generalysed ND static sensitivities of SERPENT (thanks Manuele) Jan Hajnrych starting M2 thesis = coupling SERPENT & MURE Next Scientific challenges ? Real ND are correlated, Real life reactors are not made of 1 assembly at 1 temperature : Keff = 1 (for sure), thermohydraulics do make strong feedbacks, fuel is shuffled. Are these facts decreasing or increasing ND impact ? More interdisciplinarity is needed More collaborations toward fully coupled codes WITH uncertainty calculations

Looking forward to seeing you soon Thank you Looking forward to seeing you soon closer from the stars Or on skis Or with skis in the sky