Initial Pool Generation Based on DNA Shuffling Method

Slides:



Advertisements
Similar presentations
COMPUTER EXERCISE Design of PCR and PCR-RFLP experiments This presentation shows all steps of a PCR-RFLP experiment and is a companion of the computer.
Advertisements

Ji Youn Lee School of Chemical Engineering Seoul National University
PCR Basics Purpose of PCR Overview Components of PCR Reaction
PCR Basics 1.Purpose of PCR 2.Overview 3.Components of PCR Reaction 4.Variables Temperature Cycle Times and Numbers Primer Buffer Polymerase 5.Experimental.
PCR – Polymerase chain reaction
©2003/04 Alessandro Bogliolo Primer design. ©2003/04 Alessandro Bogliolo Outline 1.Polymerase Chain Reaction 2.Primer design.
Initial Pool Generation Based on DNA Shuffling Method Eun-jeong Lee.
Long PCR Yanfei Yang Compromise of longer PCR (>3,4kb) Nonspecific primer annealing Suboptimal cycling conditions Secondary structures in the.
CULTURE INDEPENDENT ANALYSIS OF MICROBIAL COMMUNITIES IN SOIL
PCR optimization. Primers – design must be good but influenced by template sequence Quality of template DNA/impurities Components of PCR may need to be.
EDVOKIT#300: Blue/White Cloning of a DNA Fragment
Polymerase Chain Reaction. PCR Repetitive amplification of a piece or region of DNA Numerous uses –Straightforward amplification & cloning of DNA –RT-PCR.
Polymerase Chain Reaction Mrs. Stewart Medical Interventions.
Lab meeting Dilute [pcDNA3.1+cDNA U2AF1] up to 20µl (1µg/µl) Linearize pcDNA3.1+cDNA U2AF1 by ScaI ScaI1µl 10X NEB buffer (No.3)5µl BSA2µl.
Polymerase Chain Reaction (PCR) Developed in 1983 by Kary Mullis Major breakthrough in Molecular Biology Allows for the amplification of specific DNA fragments.
V IRAL Q UEST Lesson 8: Reverse Transcription. Reverse Transcription  Reverse Transcription converts RNA into complementary DNA.  This DNA strand can.
PCR is used in; Cloning into plasmid vectors DNA sequencing Genetic screening DNA based phylogeny Functional analysis of genes Identification of DNA fingerprints.
A story about Section 2. What is PCR? Polymerase Chain Reaction A method to synthesis specific DNA fragment in vitro. It is composed of many cycles including.
The polymerase chain reaction
Nucleotides and Nucleic Acids. Cellular Processes DNA RNA (mRNA) Proteins LipidsCarbohydrates replication transcription translation.
The polymerase chain reaction
Polymerase Chain Reaction A process used to artificially multiply a chosen piece of genetic material. May also be known as DNA amplification. One strand.
Amplification of a DNA fragment by Polymerase Chain Reaction (PCR) Ms. Nadia Amara.
PCR – Polymerase Chain Reaction A method of amplifying small amounts of DNA using the principles of DNA replication.
PCR With PCR it is possible to amplify a single piece of DNA, or a very small number of pieces of DNA, over many cycles, generating millions of copies.
Introduction to PCR Polymerase Chain Reaction
PUC 19 5’ 3’ 5’ 3’ 5’ 3’ 5’ 3’ PCR -I pUC 19 specific primers Amplicon purification PCR -II 5’ 3’ 5’ 3’ 5’ 3’ 5’ 3’ 5’ 3’ 5’ 3’ Composite pUC 19 primers.
The first step to model DTG-PCR Ji Youn Lee Cell and microbial engineering laboratory Seoul National University.
Lab 22 Goals and Objectives: EDVOKIT#300: Blue/White Cloning of a DNA Fragment Calculate transformation efficiencies Compare control efficiency to cloned.
PCR mediated mutagenesis 2013 년도 2 학기 생화학 실험 (2) 5 주차 조교 : 안성원.
Lecturer: Bahiya Osrah Background PCR (Polymerase Chain Reaction) is a molecular biological technique that is used to amplify specific.
Rajan sharma.  Polymerase chain reaction Is a in vitro method of enzymatic synthesis of specific DNA sequences.  This method was first time developed.
M Gradient PCR using Taq polymerase with 125ng primer concentration M: 1 kb ladder 1: 60°C 2: 62°C 3: 64.4°C 4:66.8°C 5: 69.2°C 6:71.5°C 284D.
I. PCR- Polymerase Chain Reaction A. A method to amplify a specific piece of DNA. DNA polymerase adds complementary strand DNA heated to separate strands.
The Polymerase Chain Reaction 1. The polymerase chain reaction in outline outline 2. PCR in more detail 3. Applications of PCR.
January 19, 2016 Biotech 3 Lecture Annealing 1. Melting 3. Elongation 4. Repeat cycle ~ 30 times Polymerase Chain Reaction.
Polymerase Chain Reaction. Before PCR Before PCR Recombinant Recombinant DNA DNA technology technology.
PCR The Polymerase Chain Reaction PCR The Polymerase Chain Reaction.
Presented by: Khadija Balubaid.  PCR (Polymerase Chain Reaction) is a molecular biological technique  used to amplify specific fragment of DNA in vitro.
The stroke size should be 0.25
Introduction to PCR Polymerase Chain Reaction
PCR Basics Purpose of PCR Overview Components of PCR Reaction
Topics to be covered Basics of PCR
PCR and Gel Electrophoresis
EDVOKIT#300: Blue/White Cloning of a DNA Fragment
Polymerase Chain Reaction (PCR)
Gel electrophoresis analysis Automated DNA analyzer.
PCR TECHNIQUE
Wet (DNA) computing 2001년 9월 20일 이지연
Principle of PCR Principle of PCR Prof. Dr. Baron.
Polymerase Chain Reaction
Polymerase Chain Reaction
Gradient PCR using Taq polymerase with 125ng primer concentration
BIOTECHNOLOGY BIOTECHNOLOGY: Use of living systems and organisms to develop or make useful products GENETIC ENGINEERING: Process of manipulating genes.
Polymerase Chain Reaction
PCR How does PCR work?: Separation of two strands
Polymerase Chain Reaction
3. PCR Page 376 – 377.
Polymerase Chain Reaction (PCR) technique
Locked Nucleic Acids Can Enhance the Analytical Performance of Quantitative Methylation-Specific Polymerase Chain Reaction  Karen S. Gustafson  The Journal.
PCR -PCR replicates (or amplifies) the DNA many times so that a large enough sample can be analyzed.
Sequencing and Copying DNA
The Polymerase Chain Reaction (PCR): Replicating DNA in the Test Tube
Molecular Biology lecture -Putnoky
ChIP DNA Sample Preparation
Introduction to Polymerase Chain Reaction (PCR)
Dr. Israa ayoub alwan Lec -12-
The polymerase chain reaction
Genomic DNA Sample Preparation
Giorgio Sirugo, Kenneth K. Kidd  The American Journal of Human Genetics 
Presentation transcript:

Initial Pool Generation Based on DNA Shuffling Method Eun-jeong Lee

26 City TSP Graph (1) 4 12 16 25 18 19 9 24 2 10 17 21 7 8 23 13 14 1 20 6 3 15 5 11 22

26 City TSP Graph (2) 4 12 10 17 21 14 1 20 6 3 15 2 7 8 11

26 City TSP Graph (3) 7 11 8 2 4 20 1 7 1 1 3 6 3

Initial Pool Generation Method Based on DNA shuffling PCR without primers, with oligomers coding cities and roads Begining with one set city and road, then expanding

Description of Elongation Steps

One City, One Road Case (1) Material vertex19, road19/18 (lower cost) vertex3, road3/0 (higher cost) PCR mixture contents total volume : 20 μl oligomers concentration : 0.2/0.5/1.0 μM dNTP : 400 μM enzyme : I unit ( Pyrobest®DNA Polymeraze,TaKaRa ) Reaction profile denaturation : 95℃, 20 sec annealing : 44.9/51.2/55.1℃, 30sec extension : 72℃, 30 sec cycle number : 30 times

One City, One Road Case (2) 100 bp 50 bp 1L 1H One City, One Road Case (2) lane 1 : M (50 bp) 2 : 0.2 μM 3 : 0.4 μM 4 : 1.0 μM 5 : 0.2 μM 6 : 0.4 μM 7 : 1.0 μM 8 : 0.2 μM 9 : 0.4 μM 10 : 1.0 μM 44.9℃ 51.2℃ 55.1℃ annealing T ※ 20% PAGE sample vol. : 9 μl marker vol. : 2 μl

Two Cities, Two Roads Case (1) Material vertex 19, vertex 18, road 19/18, road 18/23 (Σcost=2) vertex 3, vertex 0, road 3/0, road 0/1 (Σcost=18) PCR mixture contents total volume : 20 μl oligomers concentration : 0.5/1.0/2.0 μM dNTP : 400 μM enzyme : I unit ( Pyrobest®DNA Polymeraze,TaKaRa ) Reaction profile denaturation : 95℃, 20 sec annealing : 44.9/51.2/55.1℃, 30sec extension : 72℃, 30 sec cycle number : 30 times

Two Cities, Two Roads Case (2) 100 bp Two Cities, Two Roads Case (2) 100 bp 2L 2H 300 bp 200 bp 1 2 3 4 5 6 7 8 9 10 lane 1 : M (50 bp) 2 : 0.5 μM 3 : 1.0 μM 4 : 2.0 μM 5 : 0.5 μM 6 : 1.0 μM 7 : 2.0 μM 8 : 0.5 μM 9 : 1.0 μM 10 : 2.0 μM 44.9℃ 51.2℃ 55.1℃ annealing T ※ 20%(2L), 15%(2H) PAGE sample vol. : 9 μl marker vol. : 2 μl

Two Cities, Two Roads Case -with Cost (1) Material vertex 19, vertex 18, road 19/18, road 18/23 + cost 1 (Σcost=2) vertex 3, vertex 0, road 3/0, road 0/1 + cost 11, cost 7 (Σcost=18) PCR mixture contents total volume : 20 μl oligomers concentration : 1.0 (including the cost oligos) /1.5 (1.0 when excluding the cost oligos ) μM dNTP : 400 μM enzyme : I unit ( Pyrobest®DNA Polymeraze,TaKaRa ) Reaction profile denaturation : 95℃, 20 sec annealing : 51.2/55.1℃, 30sec extension : 72℃, 30 sec cycle number : 30 times

Two Cities, Two Roads Case -with Cost (2) 100 bp Two Cities, Two Roads Case -with Cost (2) 100 bp 2LW 300 bp 200 bp w/ cost lane 1 : M (50 bp) 2 : 0.5 μM 3 : 0.5 μM 4 : 1.0 μM 5 : 1.5 μM 6 : 1.0 μM 7 : 1.5 μM 51.2℃ 55.1℃ w/o cost annealing T 1 2 3 4 5 6 7 ※ 15%(2LW), 20%(2L) PAGE sample vol. : 9 μl marker vol. : 2 μl 2L

Two Cities, Two Roads Case -with Cost (3) 100 bp Two Cities, Two Roads Case -with Cost (3) lane 1 : M (50 bp) 2 : 1.0 μM 3 : 1.5 μM 4 : 3.0 μM 5 : 1.0 μM 6 : 1.0 μM 7 : 1.5 μM 8 : 3.0 μM 9 : 1.0 μM 10 : M (50 bp) 1 2 3 4 5 6 7 8 9 10 100 bp 300 bp 200 bp 2L 2H w/o cost ※ 12% PAGE sample vol. : 9 μl marker vol. : 2 μl

Two Cities, Two Roads Case -additional case (1) Material vertex 19, vertex 18, road 19/18, road 18/9 + cost 1 (Σcost=3) PCR mixture contents total volume : 20 μl oligomers concentration : 0.5/1.0/2.0 (excluding the cost oligos) /1.5 (1.0 when excluding the cost oligos ) μM dNTP : 400 μM enzyme : I unit ( Pyrobest®DNA Polymeraze,TaKaRa ) Reaction profile denaturation : 95℃, 20 sec annealing : 51.2/55.1℃, 30sec extension : 72℃, 30 sec cycle number : 30 times 19->18->23 의 경우, 같은 cost 1을 두 개 포함. 이 경우는 1과 2 포함

Two Cities, Two Roads Case -additional case (3) 100 bp Two Cities, Two Roads Case -additional case (3) lane 1 : M (50 bp) 2 : 0.5 μM 3 : 1.0 μM 4 : 1.5 μM 5 : 2.0 μM 6 : 1.0 μM 7 : 1.5 μM w/ cost 300 bp 200 bp 100 bp 1 2 3 4 5 6 7 ※ 12% PAGE sample vol. : 9 μl marker vol. : 2 μl 2M & 2MW

3 Cities, 3 Roads Case (1) Material PCR mixture contents city 19, city 18, city 23, road 19/18, road 18/23, road 23/5 (Σcost=1+1+1=3) city 4, city 12, city 10, road 4/12, road 12/10, road 10/17 (Σcost=1+2+3=6) city 3, city 0, city 1, road 3/0, road 0/1, road 1/14(Σcost=11+7+4=22) PCR mixture contents total volume : 20 μl oligomers concentration : 1.0/2.0 μM dNTP : 400 μM enzyme : I unit ( Pyrobest®DNA Polymeraze,TaKaRa ) Reaction profile denaturation : 95℃, 20 sec annealing : 55.1℃, 30sec extension : 72℃, 30 sec cycle number : 30 times

3 Cities, 3 Roads Case (2) lane 1 : M (50 bp) 2 : 1.0 μM 3 : 2.0 μM 3 H ※ 12% PAGE sample vol. : 9 μl marker vol. : 2 μl

Comparison of the amplification efficiency of various enzymes lane 1 : M (50 bp) 2 : Pyrobest 1U (\211,000 /125U) 3 : Pfu (sample) 4 : TaKaRa taq 1U (\153,000 /250U) 5 : TaKaRa premix (Ex taq) 0.5U (\48,000 /32rxn(=16U)) 6 : Sapphire premix 1U (10만원 정도/96rxn(=96U)

Graph Problem with 6 Cities 2003.10.21 Eun Jeong Lee

Graph ( a part of the 26 city TSP graph) 4 1 20 6 3 7 8 2 11

Materials and Method Material PCR mixture contents Reaction profile set #1 : optimal path를 구성하는 city와 road만 넣음 set #2 : 모든 city와 road를 넣음 PCR mixture contents total volume : 20 μl oligomers concentration : 0.5/1.0/2.0 μM dNTP : 400 μM enzyme : I unit ( Pyrobest®DNA Polymeraze,TaKaRa ) Reaction profile denaturation : 95℃, 20 sec annealing : 55.0℃, 30sec extension : 72℃, 30 sec cycle number : 35 times

PCR without primers (with city & road strands) 100 bp PCR without primers (with city & road strands) lane 1 : M (50 bp) 2 : 0.5 μM 3 : 1.0 μM 4 : 2.0 μM 5 : 0.5 μM 6 : 1.0 μM 7 : 2.0 μM set #1 set #2 300 bp 240 bp 200 bp 100 bp ※ 12% PAGE sample vol. : 9 μl marker vol. : 2 μl

PCR with primers - city 0, road 20/4 Template set#1 & set#2를 agarose gel에 걸어서 240bp근처를 elution하여 준비 Primers city 0 and road 20/4 * lane 1 : M (50 bp) 2 : template from set#1(1) 3 : template from set#1(2) 4 : template from set#2

Tracking the Path (set #1) 4 1 20 6 3 8 7 * lane 1 : M (50 bp) 2 : primers- city1, road 6/20 3 : primers- city3, road 20/4 148 bp ->length of city 1~city 20

PCR with primers - city 0, complementary city 4 ( for set #2 ) 100 bp 300 bp 200 bp PCR with city strands and road strands Elute the gel slice near the 240 bp PCR again with primers –city 0, complementary city 4 Results above my head... ( lane : 302/352/402/M)

列外) Orthogonality Test lane 1 : 1L+1H 2 : M (50 bp) 3 : 1.0 μM 4 : 2.0 μM 5 : 1.0 μM 6 : 2.0 μM set #1 set #2 1L : city19, road 19/18 1H : city3, road3/0