Intracellular Receptors Some receptor proteins are intracellular, found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the membrane and activate receptors Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone-receptor complex can act as a transcription factor, turning on specific genes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Hormone (testosterone) Plasma membrane Receptor protein DNA NUCLEUS Fig. 11-8-1 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM
Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-2 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM
Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-3 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor NUCLEUS CYTOPLASM
Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-4 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS CYTOPLASM
Hormone (testosterone) Plasma membrane Receptor protein Hormone- Fig. 11-8-5 Hormone (testosterone) EXTRACELLULAR FLUID Plasma membrane Receptor protein Hormone- receptor complex DNA Figure 11.8 Steroid hormone interacting with an intracellular receptor mRNA NUCLEUS New protein CYTOPLASM
Signal transduction usually involves multiple steps Concept 11.3: Transduction: Cascades of molecular interactions relay signals from receptors to target molecules in the cell Signal transduction usually involves multiple steps Multistep pathways can amplify a signal: A few molecules can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Signal Transduction Pathways The molecules that relay a signal from receptor to response are mostly proteins Like falling dominoes, the receptor activates another protein, which activates another, and so on, until the protein producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a protein Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Protein Phosphorylation and Dephosphorylation In many pathways, the signal is transmitted by a cascade of protein phosphorylations Protein kinases transfer phosphates from ATP to protein, a process called phosphorylation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Protein phosphatases remove the phosphates from proteins, a process called dephosphorylation This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Phosphorylation cascade Fig. 11-9 Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Inactive protein kinase 2 ATP Phosphorylation cascade ADP Active protein kinase 2 P PP P i Figure 11.9 A phosphorylation cascade Inactive protein kinase 3 ATP ADP Active protein kinase 3 P PP P i Inactive protein ATP ADP P Active protein Cellular response PP P i
Small Molecules and Ions as Second Messengers The extracellular signal molecule that binds to the receptor is a pathway’s “first messenger” Second messengers are small, nonprotein, water-soluble molecules or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by G protein-coupled receptors and receptor tyrosine kinases Cyclic AMP and calcium ions are common second messengers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Cyclic AMP (cAMP) is one of the most widely used second messengers Adenylyl cyclase, an enzyme in the plasma membrane, converts ATP to cAMP in response to an extracellular signal Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Fig. 11-10 Figure 11.10 Cyclic AMP Adenylyl cyclase Phosphodiesterase Pyrophosphate P P i ATP cAMP AMP Figure 11.10 Cyclic AMP
Many signal molecules trigger formation of cAMP Other components of cAMP pathways are G proteins, G protein-coupled receptors, and protein kinases cAMP usually activates protein kinase A, which phosphorylates various other proteins Further regulation of cell metabolism is provided by G-protein systems that inhibit adenylyl cyclase Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
First messenger Adenylyl cyclase G protein GTP G protein-coupled Fig. 11-11 First messenger Adenylyl cyclase G protein G protein-coupled receptor GTP ATP Second messenger cAMP Figure 11.11 cAMP as second messenger in a G-protein-signaling pathway Protein kinase A Cellular responses
Calcium Ions and Inositol Triphosphate (IP3) Calcium ions (Ca2+) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
EXTRACELLULAR FLUID Plasma membrane Ca2+ pump ATP Mitochondrion Fig. 11-12 EXTRACELLULAR FLUID Plasma membrane Ca2+ pump ATP Mitochondrion Nucleus CYTOSOL Ca2+ pump Endoplasmic reticulum (ER) Figure 11.12 The maintenance of calcium ion concentrations in an animal cell Ca2+ pump ATP Key High [Ca2+] Low [Ca2+]
Animation: Signal Transduction Pathways A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol Pathways leading to the release of calcium involve inositol triphosphate (IP3) and diacylglycerol (DAG) as additional second messengers Animation: Signal Transduction Pathways Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein Fig. 11-13-1 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure 11.13 Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ CYTOSOL
EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein Fig. 11-13-2 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure 11.13 Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Ca2+ Ca2+ (second messenger) CYTOSOL
EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein Fig. 11-13-3 EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein DAG GTP G protein-coupled receptor PIP2 Phospholipase C IP3 (second messenger) IP3-gated calcium channel Figure 11.13 Calcium and IP3 in signaling pathways Endoplasmic reticulum (ER) Various proteins activated Cellular responses Ca2+ Ca2+ (second messenger) CYTOSOL
Concept 11.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities The cell’s response to an extracellular signal is sometimes called the “output response” Figure 11.14 Nuclear responses to a signal: the activation of a specific gene by a growth factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Nuclear and Cytoplasmic Responses Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or may involve action in the nucleus Many signaling pathways regulate the synthesis of enzymes or other proteins, usually by turning genes on or off in the nucleus The final activated molecule may function as a transcription factor Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Growth factor Reception Receptor Phosphorylation cascade Transduction Fig. 11-14 Growth factor Reception Receptor Phosphorylation cascade Transduction CYTOPLASM Inactive transcription factor Active transcription factor Figure 11.14 Nuclear responses to a signal: the activation of a specific gene by a growth factor Response P DNA Gene NUCLEUS mRNA
Other pathways regulate the activity of enzymes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Glucose-1-phosphate (108 molecules) Fig. 11-15 Reception Binding of epinephrine to G protein-coupled receptor (1 molecule) Transduction Inactive G protein Active G protein (102 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (102) ATP Cyclic AMP (104) Inactive protein kinase A Active protein kinase A (104) Figure 11.15 Cytoplasmic response to a signal: the stimulation of glycogen breakdown by epinephrine Inactive phosphorylase kinase Active phosphorylase kinase (105) Inactive glycogen phosphorylase Active glycogen phosphorylase (106) Response Glycogen Glucose-1-phosphate (108 molecules)
Signaling pathways can also affect the physical characteristics of a cell, for example, cell shape Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
RESULTS CONCLUSION Fig. 11-16 Wild-type (shmoos) ∆Fus3 ∆formin CONCLUSION Mating factor 1 Shmoo projection forming G protein-coupled receptor Formin P Fus3 Actin subunit Figure 11.16 How do signals induce directional cell growth in yeast? GTP P GDP 2 Phosphory- lation cascade Formin Formin P 4 Microfilament Fus3 Fus3 P 5 3
Wild-type (shmoos) ∆Fus3 ∆formin RESULTS Fig. 11-16a Figure 11.16 How do signals induce directional cell growth in yeast? Wild-type (shmoos) ∆Fus3 ∆formin
CONCLUSION Mating factor Shmoo projection forming G protein-coupled Fig. 11-16b CONCLUSION Mating factor 1 Shmoo projection forming G protein-coupled receptor Formin P Fus3 Actin subunit GTP P GDP 2 Phosphory- lation cascade Formin Formin P 4 Figure 11.16 How do signals induce directional cell growth in yeast? Microfilament Fus3 Fus3 P 5 3