The 3-D IT: The new challenge for ATLAS Pixel detectors

Slides:



Advertisements
Similar presentations
Ecole micro-électronique, La londe-les-maures, 14 oct 2009 Pixel Hybride 3-D en techno 0.13µm pour SLHC/ATLAS P. Pangaud S. Godiot a, M. Barbero b, B.
Advertisements

The ATLAS Pixel Detector
Preparation run Tezzaron-Chartered A.Rozanov 1 Introduction Restarts test on PS en Avril 2009 Mesure PS SEU chip SEU-IBM Mhz avec FPGA.
CURRENTLY AND ADVANCED PIXEL DESIGNS FOR HEP Patrick Pangaud Centre de Physique des Particules de Marseille C.P.P.M 163, avenue de Luminy Case
Hans-Günther Moser MPI für Physik TIPP 2011 Satellite Meeting on 3D Integration June 14, D Technology Developments in Europe and EU Supported Activities.
3D chip and sensor Status of the VICTOR chip and associated sensor Bonding and interconnect of chip and sensor Input on sensor design and interconnection.
March 20, 2001M. Garcia-Sciveres - US ATLAS DOE/NSF Review1 M. Garcia-Sciveres LBNL & Module Assembly & Module Assembly WBS Hybrids Hybrids WBS.
3D Integration activities AIDA WP3 Frascati 2013 Abdenour LOUNIS, AIDA Frascati 2013 Abdenour LOUNIS, G. Martin Chassard, Damien Thienpont, Jeanne Tong-Bong.
Si Pixel Tracking Detectors Introduction Sensor Readout Chip Mechanical Issues Performance -Diamond.
Fabian Hügging – University of Bonn – February WP3: Post processing and 3D Interconnection M. Barbero, L. Gonella, F. Hügging, H. Krüger and.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
ATLAS pixel electronics RD for upgrade inner pixel layers A.Rozanov (CPPM-IN2P3-CNRS) 1FCPPL 9 April 2011 A.Rozanov.
From hybrids pixels to smart vertex detectors using 3D technologies 3D microelectronics technologies for trackers.
Report on TIPP D-IC Satellite Meeting Carl Grace June 21, 2011.
OVERVIEW OF THE PRE-FEI4 PROTOTYPE A. Mekkaoui On behalf of the FEI4 collaboration (BONN, CPPM, GENOVA, LBNL, NIKHEF)‏
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
ATLAS FP TRACKER PLANS Steve Watts School of Physics and Astronomy University of Manchester Well defined design in the FP420 Design Report Based on the.
Jorgen Christiansen, CERN PH-ESE 1.  Spokes persons and Institute chair elected ◦ SP’s: ATLAS: Maurice Garcia-Sciveres, LBNL CMS: Jorgen Christiansen,
H.-G. Moser MPI Munich Valerio Re INFN AIDA WP3 Summary 1 Status of milestones and deliverables Status of sub-projects Plans for the last year of AIDA.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
RD50 funding request Fabrication and testing of new AC coupled 3D stripixel detectors G. Pellegrini - CNM Barcelona Z. Li – BNL C. Garcia – IFIC R. Bates.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
Special Focus Session On CMOS MAPS and 3D Silicon R. Yarema On Behalf of Fermilab Pixel Development Group.
RD53 Analog IP blocks WG : developments and plans at CPPM M. Barbero, L. Gallin Martel (LPSC), Dzahini (LPSC), D. Fougeron, R. Gaglione (LAPP), F. Gensolen,
Motivation for 65nm CMOS technology
ASIC Building Blocks for Tracker Upgrade A. Marchioro / CERN-PH-ESE October, 2009.
Phase 2 Tracker Meeting 6/19/2014 Ron Lipton
Norbert Wermes, University of Bonn WP3: Development of radiation-hard high-density electronics and interconnection with sensors Talent.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
The FE-I4 Pixel Readout System-on-Chip for ATLAS Experiment Upgrades Tomasz Hemperek on behalf of ATLAS Pixel Collaboration.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
The First 3D Multiproject Run for HEP Ray Yarema On behalf of 3DIC Consortium September 23, 2009 Paris, France Topical Workshop on Experiments for Particle.
17 nov FEC4_P2 status P.Pangaud ; S.Godiot ; R.Fei ; JP.Luo Remember : P2 from P1 Optimization of Rad-Hard block and SEU tolerance blocs Optimization.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
R. Kluit Electronics Department Nikhef, Amsterdam. Integrated Circuit Design.
Plans 2009/2010 CPPM 9 June 2009 A.Rozanov 1 Introduction Preparation FE-I4 Preparation FE-TC4-Proto Tests CPPM FE-I4-Proto Tests au PS CERN en 2009.
ADVANCED PIXELS STATUS FOR FUTURE HEP EXPERIMENTS Leader: Alexandre ROZANOV Dr.CPPM, In2p3 Leader: Zheng WANG Pr.IHEP, CAS Patrick PANGAUDEng.CPPMWei WEIDr.IHEP.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Atlas 3D – 19 janv 2010 Patrick Pangaud ATLAS_3D ATLAS_3D by CPPM Motivations –Démontrer l’intérêt du 3D pour l’accroissement de la fonctionnalité pour.
Lepton-Photon 2009, Hamburg, August 18, Valerio Re - INFN Organization of Monolithic and Vertically Integrated Pixel Sensor R&D in the High Energy.
DEVELOPMENTS ON ATLAS PIXEL DETECTORS Patrick Pangaud Centre de Physique des Particules de Marseille C.P.P.M 163, avenue de Luminy Case Marseille.
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
HV2FEI4 and 3D A.Rozanov CPPM 9 December 2011 A.Rozanov.
VICTR Vertically Integrated CMS TRacker Concept Demonstration ASIC
Progress with GaAs Pixel Detectors
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
10-12 April 2013, INFN-LNF, Frascati, Italy
Digital FE-TC4-DC tier for 3D ATLAS pixel at sLHC
D. Breton, S. Simion February 2012
Pixel front-end development
Development of HV/HR CMOS sensors for the ATLAS ITk
Introduction HV HR CMOS ATLAS R&D
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
L. Rattia for the VIPIX collaboration
DHCAL TECH PROTO READOUT PROPOSAL
Hybrid Pixel R&D and Interconnect Technologies
Highlights of Atlas Upgrade Week, March 2011
ATLAS strip CMOS Development of Sensors for possible use in Silicon Strip region at phase II Aggressive time schedule – drives choices Three phase programme.
3DIC Consortium Meeting
HV-MAPS Designs and Results I
Upgrade of the ATLAS MDT Front-End Electronics
Development of the Data Handling Processor DHP
Valerio Re (INFN-Pavia) on behalf of the RD53 collaboratios
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
OMEGAPIX 3D IC prototype for the ATLAS upgrade SLHC pixel project Journées VLSI 22th June, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
Silicon pixel detectors and electronics for hybrid photon detectors
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
3D electronic activities at IN2P3
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

The 3-D IT: The new challenge for ATLAS Pixel detectors CPPM Marseille (France): B. Chantepie, J.-C. Clémens, R. Fei, D. Fougeron, S. Godiot, P. Pangaud, A. Rozanov Bonn University (Germany): D. Arutinov, M. Barbero, T. Hemperek, M. Karagounis, H. Krüger, A. Kruth, N. Wermes. LBNL Berkeley (USA): J. Fleury, M. Garcia-Sciveres, A. Mekkaoui

Hybrid Pixel Detectors for particles trackers An early 3-D approach!! Choice of several sensors for particles detection (HR Si, diamant,3D..) Dedicated electronic chip AND A bump-bonding solder for interconnection Sensors for ionizing particles (e-, photon, gamma, etc ..) Electronic pixel readout Monolithic device Analog detection (low noise, low power) Digital readout

ATLAS Pixel Detectors for LHC/SLHC LHC : Luminosity of 1034 cm-2.s-1 SLHC expected 10 times more !!! Hybrid Pixels Detector of ATLAS/LHC Like a big camera with a 1.5 m2 area and 80 Million of Pixels with a snapshot every 25ns Hybrid Pixels Detector of ATLAS/SLHC More luminosity, more pixels more ionizing particles, more … !!!

Atlas upgrades / SLHC : Why 3-D approach?

Tezzaron-Chartered 3D MPW : ATLAS/SLHC sub-part C and D Sub-part LBL G Sub-part G1 G2

Fermilab 3-D Multi-Project Run : C-Band ATLAS FETC4-AE SEU-3D FETC4-DS TSV Daisy Chain + BI Electrical Test TSV vs Transistors + capacitors Mechanical stress DFF + Trans + Cap FETC4-AE (CPPM) : same than FEI4_Proto1, but in Chartered 0.13LP FETC4-DS (CPPM) : Shift Register + counter + readout data and ”Drum registers“ SEU-3D (CPPM) : SEUless memories blocks General test structures (CPPM) : TSV + BI Daisy chain (electrical parameters) ; TSV capacitors value with and without BackMetal and BI ; Transistors (Linear and ELT) closed to TSV ; Mechanical stress effects of devices (Trans, Cap, Res, DFF)

Fermilab 3-D Multi-Project Run : D-Band ATLAS FETC4-AE FETC4-DC OmegaPix Analog Digital Electrical Test TSV vs Transistors TSV, Cap and Bump FETC4-AE (CPPM) : same than FEI4_Proto1, but in Chartered 0.13LP FETC4-DC (Bonn-CPPM) : Digital pixels Read-out "à la FEI4“ (M.Barbero) OmegaPix (LAL) : see (D. Thienpont ) presentation General test structures (CPPM) : TSV + BI Daisy chain (electrical parameters) ; TSV capacitors value with and without BackMetal and BI ; Transistors (Linear and ELT) closed to TSV ; Mechanical stress effects of devices (Trans, Cap, Res, DFF)

Fermilab 3-D Multi-Project Run : G-Band LBNL- Fermilab FETC4-AH FETC4-DS FETC4-AH (LBL-CPPM) : same than FEI4_Proto1 but with holes collection. FETC4-DS (CPPM) : Shift Register + counter + readout data and ”Drum registers“

FETC4 - Atlas 3-D Read-Out chip Fermilab proposal 3D HEP consortium Tezzaron-Chartered MPW FETC4-AEDS FETC4-AEDC Tezzaron Chartered 1st MPW Run (Summer 2009) Chartered 1st Prototype (Feb 2009) FEC4-P1 Chartered 2nd Prototype (Nov 2009) FEC4-P2 FETC4-A ATLAS 3D Read-Out chip Pixel size : 50 x 125 µm Pixel array size : 160 x 336 Chip size : 19 x 20 mm Chartered 3rd Prototype (June 2010) FEC4-P3 Tezzaron Chartered 2nd MPW Run (?)

FETC4_AEDS (DC) : Atlas 3-D Read-Out proto chip 2 Tiers + Sensor Analog part : Tier 1 (C1, D1) thinned to use SuperContact which are connected to the Back side metal (wire and bump-bonding interface) Digital part : Tier 2 (C2, D2). Sensor : Tier 0 M5 M4 M3 M2 M1 M6 SuperContact Bond Interface Tier 2 (thinned wafer) Tier 1 Back Side Metal sensor

FETC4_AEDS (DC) : Atlas 3-D Read-Out proto chip Sensor aspect Sensor layout : Max-Planck-Institut für Physik, Werner Heisenberg Institut , Munich Bump-Bonding : IZM , Munich Due to the bonding constraints, the geometrical sensor area had to be shrink Sensor : 7 columns of 48 pixels Tier 1 and Tier 2 : 14 columns of 61 pixels

Tezzaron-Chartered 3D MPW (C1 and D1) : Analog Tier FETC4-AE Based from the FEI4-P1 chip made in IBM 0.13µm technology : Signal from Sensor, via TSVs 2 ways for read-out the discriminator: By the classical way in Tier1 By the FEC4-DS or DC chip (Tier 2) via the BI.

Tezzaron-Chartered 3D MPW (C2) : Digital Tier FETC4-DS 3 functions : Read-out the analog Tier 1 Noise generator (pick-up, coupling, etc…) in front of 11 specifics area of Tier 1 (preamplifier, feed-back capacitor, DAC…) Several programmable shielding configuration Analog tier and Digital tiers are face-to-face with only ~5µm of distance FE-TC4-DS is mainly dedicated to study the parasitic coupling between two tiers ANALOGUE DIGITAL

ATLAS chips - historical review : FEC4-P1 and FETC4-AEDS(DC) FEC4-P1, run 2D (submission February 2009, test April 2009) : 2D run in 0.13LP Chartered technology. 1st approach Layout translation of FEI4-P1 IBM 0.13µm 8LM to FEC4-P1 CHRT 0.13µm 8LM FETC4-AEDS (DC) (submission July 2009, test expecting before summer 2010) : 3D run in 0.13LP Tezzaron-Chartered technology. Layout translation of FEI4-P1 IBM 0.13µm 8LM to FETC4-P1 CHRT 0.13µm 5LM Move from de 8LM to 5LM 3D structures Two additional Digitals Tiers

ATLAS chips - historical review : FEC4-P1 et FEC4-P2 Test Results of FEC4-P1 : Chip is working The minimum threshold is # 1100 e- ; threshold resolution# 200 e-; Noise < 80 e- Irradiation : the chip is working for a X-rays dose rate up to 200MRad Defected has been found for an protons dose-rate up to 160 MRad. The memories structures (Latches) stacked up to 1. FEC4-P2, run 2D (submission November 2009, chip under test) : 2D run in 0.13LP Chartered technology. 2nd prototype to corrected the first one. Analog Part : Optimization of the transistors size dedicated to the Chartered constraints technology Digital Part : Memories latches => modification with 2 kinds of architecture. Layout optimization.

FEx4 ATLAS chips : next in 2010… FEC4-P3, run 2D (submission June 2010) : 2D run in 0.13LP Chartered technology. Hope last prototype . To finished the translation of the last building blocks in CHRT technology : Current Ref, PLL, LVDS, etc … Pixel modification : to shrink pixel size to 125µm and to reduce the metal levels to 5. Structures ready for the 3D chip FETC4-A, run 3D (before the end of 2010) : Very large matrix size : 336 x 80 Small pixel size : 125µm x 50µm Twin of FEI4-A but with an half size pixel.

Feedback of 3D development 3D vision Long understanding 3D Tezzaron process Bad layer numbers definition 2 TopMetal but 1 TM for BI !!! Backside Metal : poor rules!! Filling!! And floating metal !! PDK Chartered PDK is not really a PDK but pieces of PDK Very poor PDK with not optimized PCELLS regarding min values of rules !!! Chartered PDK is not stable and need to be wary all the time (no support but only access to GlobalFoundries site!!) Ever requested, never replied !!! Sub-versions of Calibre files are not compatible between us (bad experience with FEC4_P1) Home-made 3D DRC-LVS calibre deck tools Check face to face BI connections Check TSV density Bad layers definitions, source of mistakes Developed our own StreamLayers file Now we switched to the Cadence OA version Only one PDK up-to-date, from one source, with one support team, and contact persons Request