Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Lecture 1b - Review Kishore C Acharya. 2 Building Semiconductor Devices To build semiconductor devices # of carriers present in the semiconductor must.
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Professor Ronald L. Carter
Long Channel MOS Transistors
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Long Channel MOS Transistors
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Professor Ronald L. Carter
EE130/230A Discussion 8 Peng Zheng.
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Sung June Kim Chapter 18. NONIDEAL MOS Sung June Kim
Semiconductor Device Modeling & Characterization Lecture 19
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Professor Ronald L. Carter
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ EE5342 – Semiconductor Device Modeling and Characterization Lecture 24 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L24 April 19

Ideal 2-terminal MOS capacitor/diode conducting gate, area = LW Vgate -xox SiO2 y L silicon substrate tsub Vsub x L24 April 19

Band models (approx. scale) metal silicon dioxide p-type s/c Eo qcox ~ 0.95 eV Eo Eo qcSi= 4.05eV qfm= 4.1 eV for Al Ec qfs,p Eg,ox ~ 8 eV EFm Ec EFp EFi Ev Ev L24 April 19

Flat band condition (approx. scale) SiO2 p-Si q(fm-cox)= 3.15 eV q(cox-cSi)=3.1eV Ec,Ox qffp= 3.95eV EFm Ec Eg,ox~8eV EFi EFp Ev Ev L24 April 19

Equivalent circuit for Flat-Band Surface effect analogous to the extr Debye length = LD,extr = [eVt/(qNa)]1/2 Debye cap, C’D,extr = eSi/LD,extr Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’D,extr L24 April 19

Accumulation for Vgate< VFB -xox SiO2 EOx,x<0 holes p-type Si tsub Vsub = 0 x L24 April 19

Accumulation p-Si, Vgs < VFB Fig 10.4a* L24 April 19

Equivalent circuit for accumulation Accum depth analogous to the accum Debye length = LD,acc = [eVt/(qps)]1/2 Accum cap, C’acc = eSi/LD,acc Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’acc L24 April 19

Depletion for p-Si, Vgate> VFB -xox SiO2 EOx,x> 0 Depl Reg Acceptors p-type Si tsub Vsub = 0 x L24 April 19

Depletion for p-Si, Vgate> VFB Fig 10.4b* L24 April 19

Equivalent circuit for depletion Depl depth given by the usual formula = xdepl = [2eSi(Vbb)/(qNa)]1/2 Depl cap, C’depl = eSi/xdepl Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’depl L24 April 19

Inversion for p-Si Vgate>VTh>VFB Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 L24 April 19

Inversion for p-Si Vgate>VTh>VFB Fig 10.5* L24 April 19

Approximation concept “Onset of Strong Inv” OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh L24 April 19

MOS Bands at OSI p-substr = n-channel Fig 10.9* L24 April 19

Equivalent circuit above OSI Depl depth given by the maximum depl = xd,max = [2eSi|2fp|/(qNa)]1/2 Depl cap, C’d,min = eSi/xd,max Oxide cap, C’Ox = eOx/xOx Net C is the series comb C’Ox C’d,min L24 April 19

MOS surface states** p- substr = n-channel L24 April 19

n-substr accumulation (p-channel) Fig 10.7a* L24 April 19

n-substrate depletion (p-channel) Fig 10.7b* L24 April 19

n-substrate inversion (p-channel) Fig 10.7* L24 April 19

Values for gate work function, fm L24 April 19

Values for fms with metal gate L24 April 19

Values for fms with silicon gate L24 April 19

Typical fms values Fig 10.15* fms (V) NB (cm-3) L24 April 19

Flat band with oxide charge (approx. scale) SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) q(fm-cox) Ex Eg,ox~8eV EFm Ec EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev L24 April 19

Flat-band parameters for n-channel (p-subst) L24 April 19

Flat-band parameters for p-channel (n-subst) L24 April 19

Inversion for p-Si Vgate>VTh>VFB Vgate> VFB EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 L24 April 19

Approximation concept “Onset of Strong Inv” OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh Assume ns = 0 for VG < VTh Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh Cd,min = eSi/xd,max for VG > VTh Assume ns > 0 for VG > VTh L24 April 19

MOS Bands at OSI p-substr = n-channel Fig 10.9* 2q|fp| qfp xd,max L24 April 19

Computing the D.R. W and Q at O.S.I. Ex Emax x L24 April 19

Calculation of the threshold cond, VT L24 April 19

Equations for VT calculation L24 April 19

Fully biased n-MOS capacitor VG Channel if VG > VT VS VD EOx,x> 0 n+ e- e- e- e- e- e- n+ p-substrate Vsub=VB Depl Reg Acceptors y L24 April 19 L

MOS energy bands at Si surface for n-channel Fig 8.10** L24 April 19

Computing the D.R. W and Q at O.S.I. Ex Emax x L24 April 19

Q’d,max and xd,max for biased MOS capacitor Fig 8.11** xd,max (mm) L24 April 19

Fully biased n- channel VT calc L24 April 19

n-channel VT for VC = VB = 0 Fig 10.20* L24 April 19

References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 L24 April 19