Johannes Kofler Max Planck Institute of Quantum Optics (MPQ)

Slides:



Advertisements
Similar presentations
Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler.
Advertisements

Closing loopholes in Bell tests of local realism Workshop Quantum Physics and the Nature of Reality International Academy Traunkirchen, Austria 22 November.
From Einstein’s intuition to quantum bits: a new quantum age?
Experiments thought to prove non – locality may be artifacts Karl Otto Greulich. Fritz Lipmann Institute Beutenbergstr. 11 D Jena Entanglement, the.
1 quantum teleportation David Riethmiller 28 May 2007.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Texas A&MTexas A&M Physics&AstronomyPhysics&Astronomy Seven Pines Symposium XVII 2013 Bell Inequality Experiments Edward S. Fry Physics & Astronomy Department.
Separable States can be Used to Distribute Entanglement Toby Cubitt 1, Frank Verstraete 1, Wolfgang Dür 2, and Ignacio Cirac 1 1 Max Planck Institüt für.
Bell inequality & entanglement
Bell’s inequalities and their uses Mark Williamson The Quantum Theory of Information and Computation
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
Entanglement and Bell’s Inequalities Aaron Michalko Kyle Coapman Alberto Sepulveda James MacNeil Madhu Ashok Brian Sheffler.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Necessary and sufficient conditions for macroscopic realism from quantum mechanics Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
Quantum, classical & coarse-grained measurements Johannes Kofler and Časlav Brukner Faculty of Physics University of Vienna, Austria Institute for Quantum.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Nonlocality of a single particle Jacob.
Photonic Bell violation closing the fair-sampling loophole Workshop “Quantum Information & Foundations of Quantum Mechanics” University of British Columbia,
University of Gdańsk, Poland
Requirements for a loophole-free Bell test using imperfect setting generators Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
QUANTUM TELEPORTATION
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
Necessary adaptation of the CH/Eberhard inequality bound for a loophole-free Bell test Quantum Theory: from Problems to Advances – QTPA Linnaeus University,
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
IIS 2004, CroatiaSeptember 22, 2004 Quantum Cryptography and Security of Information Systems 1 2
Practical Aspects of Quantum Coin Flipping Anna Pappa Presentation at ACAC 2012.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
1 Experimenter‘s Freedom in Bell‘s Theorem and Quantum Cryptography Johannes Kofler, Tomasz Paterek, and Časlav Brukner Non-local Seminar Vienna–Bratislava.
Quantum Dense coding and Quantum Teleportation
Black-box Tomography Valerio Scarani Centre for Quantum Technologies & Dept of Physics National University of Singapore.
A condition for macroscopic realism beyond the Leggett-Garg inequalities APS March Meeting Boston, USA, March 1 st 2012 Johannes Kofler 1 and Časlav Brukner.
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013.
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Violation of local realism with freedom of choice Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics and Quantum Information.
Bell and Leggett-Garg tests of local and macroscopic realism Theory Colloquium Johannes Gutenberg University Mainz, Germany 13 June 2013 Johannes Kofler.
Bell’s Inequality.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Macrorealism, the freedom-of-choice loophole, and an EPR-type BEC experiment Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics.
Quantum Non-locality: From Bell to Information Causality Alex Thompson Physics 486 March 7, 2016.
Spooky action at distance also for neutral kaons? by Beatrix C. Hiesmayr University of Vienna Projects: FWF-P21947 FWF-P23627 FWF-P26783 Fundamental Problems.
Secret keys and random numbers from quantum non locality Serge Massar.
Non-locality and quantum games Dmitry Kravchenko University of Latvia Theory days at Jõulumäe, 2008.
Cryptography and Non-Locality Valerio Scarani Centre for Quantum Technologies National University of Singapore Ph.D. and post-doc positions available Barrett.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University,
Using Neutrino Oscillations to Test the Foundations of Quantum Mechanics David Kaiser.
Quantum nonlocality based on finite-speed causal influences
Understanding Quantum Correlations
No Fine theorem for macroscopic realism
Loophole-free test of Bell’s theorem with entangled photons
M. Stobińska1, F. Töppel2, P. Sekatski3,
Simulating entanglement without communication
ICNFP, Kolymbari, Crete, Greece August 28 – September 5, 2013
Quantum mechanics from classical statistics
Realism Versus Quantum Mechanics: Implications of Some Recent Experiments A. J. Leggett Department of Physics University of Illinois at Urbana-Champaign.
Classical World because of Quantum Physics
Max Planck Institute of Quantum Optics (MPQ)
EPR Paradox and Bell’s theorem
Atom Chip Group, Ben Gurion University, Beersheba, Israel
All-versus-nothing proof of Bell’s theorem for two observers
Experimental test of nonlocal causality
Presentation transcript:

A significant-loophole-free test of Bell’s theorem with entangled photons Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany PQE-2016 Snowbird, Utah, USA 4 Jan. 2016

The team Marissa Giustina Marijn A. M. Versteegh Sören Wengerowsky Johannes Handsteiner Armin Hochrainer Kevin Phelan Fabian Steinlechner Thomas Scheidl Rupert Ursin Bernhard Wittmann Anton Zeilinger Thomas Gerrits Adriana E. Lita L. Krister Shalm Sae Woo Nam Carlos Abellán Waldimar Amaya Valerio Pruneri Morgan W. Mitchell Jörn Beyer Jan-Åke Larsson Johannes Kofler Reference: Phys. Rev. Lett. 115, 250401 (2015)

Introduction Local realism: “objects have pre-existing definite properties & no action at a distance”  Bell’s inequality Relevant for (security of) modern quantum information protocols Quantum cryptography Randomness amplification / expansion Bell experiments have “loopholes” Locality Freedom of choice Fair sampling Coincidence time Memory Four “loophole-free” experiments in 2015 (Delft1, Boulder2, Vienna3, Munich) John S. Bell (1928–1990) 1 B. Hensen et al., Nature 526, 682 (2015) 2 L. K. Shalm et al., PRL 115, 250402 (2015) 3 M. Giustina et al., PRL 115, 250401 (2015)

Bell’s Assumptions Bell’s theorem Bell:1,2 “Local causality”: “Freedom of choice”:3 (“measurement independence”)  Local causality  Freedom of choice  Bell inequality Additional assumptions: original Bell paper:1 “Perfect anti-correlation”: A(b,λ) = –B(b,λ) CHSH:4 “Fair sampling” 1 J. S. Bell, Physics 1, 195 (1964) 3 J. F. Clauser & M. A. Horne, Phys. Rev. D 10, 526 (1974) 2 J. S. Bell, Epistemological Lett. 9 (1976) 4 J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969)

Locality Loophole addressed by space-time arrangement:1,2 23.11.2018 Locality Loophole addressed by space-time arrangement:1,2 Space-like separation between the outcomes (outcome independence) Space-like separation between each outcome and the distant setting (setting independence) Remark: Collapse locality loophole3 cannot be fully closed in principle 1 A. Aspect, P. Grangier, G. Roger, PRL 49, 91 (1982) 2 G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, PRL 81, 5039 (1998) 3 A. Kent, PRA, 012107 (2005)

Freedom of choice Loophole addressed by space-time arrangement:1,2 23.11.2018 Freedom of choice Loophole addressed by space-time arrangement:1,2 Space-like separation of setting choice events a,b and the pair emission event E (assuming that hidden variables are created at E) Remarks: Superdeterminism can never be ruled out Cosmic sources:3 1 T. Scheidl, R. Ursin, J.K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010) 2 C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. L. Higgins, Z. Yan, C. J. Pugh, J.-P. Bourgoin, R. Prevedel, L. K. Shalm, L. Richards, N. Gigov, R. Laflamme, G. Weihs, T. Jennewein, K. J. Resch, Nature Photon. 8, 292 (2014) 3 J. Gallicchio, A. S. Friedman, D. I. Kaiser, PRL 112, 110405 (2014)

Fair sampling Fair sampling: Local detection efficiency depends only on hidden variable: A = A(), B = B()  observed outcomes faithfully reproduce the statistics of all emitted particles Unfair sampling: Local detection efficiency is setting-dependent A = A(a,), B = B(b,)  fair-sampling (detection) loophole1 Two options to close the loophole: Violate inequality that assumes fair sampling (e.g. CHSH) and show large total detection efficiency (> 82.8% for CHSH2) Atoms3, superconducting qubits4 Violate inequality that does not assume fair sampling (e.g. CH, Eberhard, eff. 2/3) Photons5,6 1 P. M. Pearle, PRD 2, 1418 (1970) 3 M. A. Rowe et al., Nature 409, 791 (2001) 4 M. Ansmann et al., Nature 461, 504 (2009) 5 M. Giustina et al., Nature 497, 227 (2013) 6 B. G. Christensen et al., PRL 111, 130406 (2013) 2 A. Garg & N. D. Mermin, PRD 35, 3831 (1987)

Coincidence-time Unfair coincidences: Detection time is setting-dependent TA = TA(a,), TB = TB(b,)  coincidence-time loophole1 Moving windows coinc.-time loophole open Predefined fixed local time slots2 coinc.-time loophole closed3,4,5 1 J.-Å. Larsson and R. Gill, EPL 67, 707 (2004) 3 M. B. Agüero et al., PRA 86, 052121 (2012) 4 B. G. Christensen et al., PRL 111, 130406 (2013) 5 M. Giustina et al., Nature 497, 227 (2013) 2 J.-Å. Larsson, M. Giustina, J.K., B. Wittmann, R. Ursin, S. Ramelow, PRA 90, 032107 (2014)

Memory Memory: k-th outcome A(k) can depend on history: A(k) = A(k)(A(1),…,A(k–1); a(1),…,a(k); B(1),…,B(k–1); b(1),…,b(k–1)) similar for B(k)  memory loophole1,2,3 Two solutions: Space-like separated setups, used only once for each pair (unfeasible / impossible) ..... Drop assumption that trials are i.i.d. (independent and identically distributed) cannot use “standard” standard-deviation approach  “hypothesis testing”, e.g. supermartingales & Hoeffding‘s inequality 1 L. Accardi & M. Regoli, quant-ph/0007005; quantph/0007019; quant-ph/0110086 2 R. Gill, quant-ph/0110137, quant-ph/0301059 3 A. Kent, PRA 72, 012107 (2005)

Vienna experiment Source: pulsed (1 MHz) type-II SPDC in Sagnac configuration Detectors: superconducting transition edge sensors

Closing the locality & freedom-of-choice loopholes

Closing fair sampling, coincidence-time, memory CH-E inequality derived without the fair-sampling assumption: Can be violated with non-maximally entangled states Locally predefined fixed time-slots close the coincidence-time loophole Excess predictability of settings:   2  510–4 Requires adaptation of CH-E inequality:1 Closing memory loophole: Hoeffding’s inequality for J process 1 J. Kofler, M. Giustina, J.-Å. Larsson, M. W. Mitchell, arXiv:1411.4787

Results trials at 1 MHz, 3510 s measurement time, i.e.  3.5 billion trials one down-conversion pair in every 3500 trials total detection efficiency: 78.6% (Alice), 76.2% (Bob) state: r  –2.9, visibility > 99% (for product and singlet state) J-value: 7.2710–6 p-value: 3.7410–31 (probability that local realism could have produced the data by a random variation)

p-value versus excess predictability p-value of 3.7410–31 for characterized excess predictability   2.410–4 p-value remains below “gold standard” of 10–6 (dashed line) for  up to 0.65%

Conclusion Bell experiment using entangled photons Closing simultaneously the following loopholes: Locality Freedom of choice Fair sampling Coincidence time Memory Strong statistical violation Still requires assumptions (no super- determinism, classical rules of logic, etc)