What (exo)-planetary science can be done with microlensing?

Slides:



Advertisements
Similar presentations
EUCLID : From Dark Energy to Earth mass planets and beyond Jean-Philippe Beaulieu Institut dAstrophysique de Paris Dave Bennett University of Notre Dame.
Advertisements

Microlensing Surveys for Finding Planets Kem Cook LLNL/NOAO With thanks to Dave Bennett for most of these slides.
The Smallest Planet Orbiting the Smallest Star David Bennett University of Notre Dame for the MOA & OGLE Collaborations mobile phone:
Astrophysical applications of gravitational microlensing By Shude Mao Ziang Yan Department of Physics,Tsinghua.
1 Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRT 228 Dr. H. Geller FALL 2014.
Other Science from Microlensing Surveys I or Microlenses as Stellar Probes By Jonathan Devor.
Lecture 11: The Discovery of the World of Exoplanets
The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Gravitational Lensing Time Series.
Extrasolar planet detection: Methods and limits Ge/Ay133.
Ge/Ay133 What (exo)-planetary science can be done with microlensing?
Planetary Microlensing for dummies Nick Cowan April 2006.
The Galactic Exoplanet Survey Telescope (GEST) D. Bennett (Notre Dame), J. Bally (Colorado), I. Bond (Auckland), E. Cheng (GSFC), K. Cook (LLNL), D. Deming,
GALAXY FORMATION AND EVOLUTION - 2. DISCOVER Magazine’s 2007 Scientist of the Year David Charbonneau, of the Harvard-Smithsonian Canter for Astrophysics.
PX437 EXOPLANETS Horne PX437 EXOPLANETS Gravitational microlensing Paczynski 1996, ARA&A 34, 419 Observer Lensing mass Background source.
Detection of Terrestrial Extra-Solar Planets via Gravitational Microlensing David Bennett University of Notre Dame.
Exploring Black Hole Demographics with Microlensing
Dark Matter in our Galactic Halo. The rotation curve of the disk of our galaxies implies that our Galaxy contains more mass than just the visible stars.
1 Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRT 228 Dr. H. Geller Fall 2012.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
DRM1 & Exoplanet Microlensing David Bennett University of Notre Dame.
Searches for exoplanets
OGLE-2003-BLG-235/MOA-2003-BLG-53: A Definitive Planetary Microlensing Event David Bennett University of Notre Dame.
Extra-Solar Planets Astronomy 311 Professor Lee Carkner Lecture 24.
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
Measuring Parameters for Microlensing Planetary Systems. Scott Gaudi Matthew Penny (OSU)
A Short Talk on… Gravitational Lensing Presented by: Anthony L, James J, and Vince V.
Microlensing, « blue dot team » Jean-Philippe Beaulieu Collaborators/interested by a microlensing program on EUCLID IAP : Batista, Marquette Observatoire.
The mass of the free-floating planet MOA-2011-BLG-274L Philip Yock 18 th International Conference on Gravitational Lensing LCOGT, Santa Barbara January.
Towards Earth mass planets via microlensing. Jean-Philippe Beaulieu, et al. HOLMES & PLANET Collaboration Institut d’Astrophysique de Paris Europlanet.
16th Microlensing Season of the Optical Gravitational Lensing Experiment A. Udalski Warsaw University Observatory.
Triple-lens analysis of event OB07349/MB07379 Yvette Perrott, MOA group.
Exoplanets with WFIRST: Science Questions, Goals, and a FOM Scott Gaudi With input from David Bennett and the ExoSubCommitee Jay Anderson, JP Beaulieu,
Extrasolar Planets Instructor: Calvin K. Prothro; P.G., CPG (John Rusho) Section 003: F343, T Th 11:00 p.m. to 12:15 p.m. Section 004: F381, T Th 12:30.
Beyond the Solar System: Discovering extrasolar planets Extrasolari Live! Project 27 February 2008 Powerpoint by G. Masi.
Korean Astronomical Society Meeting, April 22, 2005 Scott Gaudi Harvard-Smithsonian Center for Astrophysics & Topics in the Search for Extrasolar Planets.
Other Planets (Exoplanets). OGLE-2005-BLG-390Lb Discovered in 2005, via `gravitational microlensing’, which uses the properties of lensing of light to.
Extrasolar Planet Search OGLE-2005-BLG-390Lb The Age of Miniaturization: Smaller is Better OGLE-2005-BLG-390Lb is believed to be the smallest exoplanet.
Extrasolar planets Emre Işık (MPS, Lindau) S 3 lecture Origin of solar systems 14 February 2006.
Detection of Extrasolar Planets through Gravitational Microlensing and Timing Method Technique & Results Timing Method.
Microlensing planet surveys: the second generation Dan Maoz Tel-Aviv University with Yossi Shvartzvald, OGLE, MOA, microFUN.
Extrasolar Planets The Search For Ever since humans first gazed into the night sky, the question of whether we are alone in the universe has remained unanswered.
Gravitational Lensing: How to See the Dark J. E. Bjorkman University of Toledo Department of Physics & Astronomy.
Chinese- international collaboration solved the central question: ”How common are planets like the Earth”
The WFIRST Microlensing Exoplanet Survey: Figure of Merit David Bennett University of Notre Dame WFIRST.
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
1 Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller.
Lecture 34 ExoPlanets Astronomy 1143 – Spring 2014.
Eva Meyer MPIA-Student-Workshop, Italy Various information from different detection methods.
Exoplanets Or extra-solar planets have recently been discovered. There are important to find to help fill in the Drake Equation that determines the probability.
Cool planet mass function and a fly’s-eye ‘evryscope’ at Antarctica Philip Yock, Auckland, New Zealand 20th Microlensing Workshop Institut d'Astrophysique.
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
MOA-II microlensing exoplanet survey
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
The Search for Another Earth Exoplanets and the Kepler Spacecraft.
March 7, 2016March 7, 2016March 7, 2016Yerevan, Armenia1 GRAVITATIONAL LENSING GRAVITATIONAL LENSING History, Discovery and Future Measuring Mass of Dark.
Astrophysical applications of gravitational microlensing(II) By Shude Mao Ziang Yan Department of Physics,Tsinghua.
Completing the Census of Exoplanetary Systems with WFIRST
Chapitre 1- Introduction
Observing the parallax effect due to gravitational lensing with OSIRIS
Habitability Outside the Solar System
Keith Horne.
Exoplanets EXOPLANETS Talk prepared by: Santanu Mohapatra(14PH20032)
Microlensing with CCDs
3677 Life in the Universe: Extra-solar planets
Last Friday: Solar System Highlights: Real footage of Saturn & Jupiter
NASA discovery (22th February 2017):
EXPLORING FREE FLOATING PLANETS WITH MICROLENSING
Where We Are…. As of November 21, 2016, over 3400 confirmed exoplanets had been found, with over 4500 additional candidate exoplanets. We can look at these.
The Search for Habitable Worlds
Presentation transcript:

What (exo)-planetary science can be done with microlensing? Ge/Ay133

Other routes to Earth-like planets? α = 4GM/bc2 b

Microlensing example:

Microlensing example:

Best geometry uses stars at a few kpc (the lens) against the Galactic Bulge (light source). 5.5 MEarth planet at 2.6 AU around a M-dwarf (0.22 M) primary at 6.6 ± 1.0 kpc. J.-P. Beaulieu et al. Nature 439, 437-440 (26Jan2006)

Magnification map of the lensing system in OGLE 2003-BLG-235/MOA 2003-BLG-53. Biggest perturbation when planet is near Einstein ring AND the location of the background stellar image (so, some/ many planets missed). I.A. Bond et al. 2004, ApJ, 606, L155

OGLE 2003-BLG-235/MOA 2003-BLG-53 Animations: I.A. Bond et al. 2004, ApJ, 606, L155

Are there Earth-like planets beyond the snow-line?

Something like ten systems so far, +’s/-’s ? Advantages of the microlensing technique to detect exoplanets include: * More sensitive than most other techniques to small-mass planets (like Earth) * Most sensitive to planets in our Galaxy that have orbit sizes of a few astronomical units (like those of Mars or Jupiter) * Only method capable of detecting planets in other galaxies * The most common stars in the Galaxy will be the most likely lenses * Capable of detecting (with some probability) multiple planets in a single lightcurve. In summary, the microlensing can be used to study the statistical abundance of exoplanets in our Galaxy with properties similar to the planets in our own Solar System.

Something like ten systems so far, +’s/-’s ? Disadvantages of the microlensing technique to detect exoplanets include: * Millions of stars must be monitored to find the few that are microlensing at any given time * Planetary deviations in lightcurve are short-lived and could be missed due to inopportune timing * Substantial probability that any planet will not be detected in lens system, even if present * Deviations in microlensing lightcurves due to planets will not repeat (as they are due to a chance alignment) * Planetary parameters (such as mass, orbit size, etc) depend on the properties of the host star, which are typically unknown In sum, the microlensing technique requires intensive use of telescope time, and is unsuitable for continued detailed study of individual exoplanets.