Circumscribed circles of a triangle

Slides:



Advertisements
Similar presentations
Concurrent Lines, Medians, and Altitudes
Advertisements

Find each measure of MN. Justify Perpendicular Bisector Theorem.
Bisectors in Triangles
Vocabulary concurrent point of concurrency circumcenter of a triangle
Geometry Bisector of Triangles CONFIDENTIAL.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
Bisectors of Triangles
Objectives: Discover points of concurrency in triangles. Draw the inscribed and circumscribed circles of triangles. Warm-Up: How many times can you subtract.
5.2 Bisectors of Triangles5.2 Bisectors of Triangles  Use the properties of perpendicular bisectors of a triangle  Use the properties of angle bisectors.
Concurrent Lines Geometry Mrs. King Unit 4, Day 7.
° ° y + 3 = - ½ (x + 2)43. parallel 20. y – 2 = x neither.
5.3 - Concurrent Lines, Medians, and Altitudes
Chapter Bisectors of angles. Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle.
Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle bisectors of a triangle.
5.2: Circumcenters and Incenters
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Bisectors of a Triangle
5.3: Concurrent Lines, Medians and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of.
3.6—Bisectors of a Triangle Warm Up 1. Draw a triangle and construct the bisector of one angle. 2. JK is perpendicular to ML at its midpoint K. List the.
5-3 Bisectors in Triangles
Bisectors in Triangles.  Since a triangle has ________ sides, it has three ___________ ____________ The perpendicular bisector of a side of a _____________.
Bisectors in Triangles Chapter 5 Section 3. Objective Students will identify properties of perpendicular bisectors and angle bisectors.
Perpendicular and Angle Bisectors Perpendicular Bisector – A line, segment, or ray that passes through the midpoint of a side of a triangle and is perpendicular.
Bisectors in Triangles
Triangle Bisectors 5.1 (Part 2). SWBAT Construct perpendicular bisectors and angle bisectors of triangles Apply properties of perpendicular bisectors.
Bisectors of a Triangle Geometry. Objectives Use properties of perpendicular bisectors of a triangle. Use properties of angle bisectors of a triangle.
Math 1 Warm-ups Fire stations are located at A and B. XY , which contains Havens Road, represents the perpendicular bisector of AB . A fire.
Chapter 5 Lesson 3 Objective: Objective: To identify properties of perpendicular and angle bisectors.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
5.2 Bisectors of Triangles Guiding Question: How can an event planner use perpendicular bisectors of triangles to find the best location for a firework.
Bisectors of Triangles
Bisectors in Triangles
Bisectors in Trangles 5.2.
Objectives Apply properties of perpendicular bisectors and angle bisectors of a triangle.
5-3 Bisectors in Triangles
Bisectors of Triangles
 .
Bisectors of Triangles
Bisectors in Triangles
Section 5.1.
Warm Up 1. Draw a triangle and construct the bisector of one angle.
Bisectors in Triangles
5.2 Bisectors of a Triangle
Learning Targets I will be able to: Prove and apply properties of perpendicular bisectors of a triangle. and prove and apply properties of angle bisectors.
Bisectors of Triangles
Class Greeting.
Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle bisectors of a triangle.
Bisectors of Triangles
Vocabulary concurrent point of concurrency circumcenter of a triangle
5.3 Concurrent Lines, Medians, and Altitudes
5.2 Bisectors of a Triangle
5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation
Bisectors of Triangles
5.1 and 5.2 Midsegments and Bisectors of Triangles
Bisectors in Triangles
Bisectors in Triangles
Bisectors of Triangles
Bisectors of Triangles
Bisectors of a Triangle
Bisectors in Triangles
Bisectors in Triangles
Learning Targets I will prove and apply properties of perpendicular bisectors of a triangle. I will prove and apply properties of angle bisectors of a.
5.2 Bisectors of Triangles
Bisectors in Triangles
5.1 and 5.2 Midsegments and Bisectors of Triangles
Bisectors in Triangles
Bisectors of a Triangle
Bisectors of Triangles
Constructing a Circumcenter
Presentation transcript:

Circumscribed circles of a triangle G- C 3. Construct the inscribed and circumscribed circles of a triangle,

Warm Up 1. Draw a triangle and construct the bisector of one angle. 2. JK is perpendicular to ML at its midpoint K. List the congruent segments.

Objectives Prove and apply properties of perpendicular bisectors of a triangle. Prove and apply properties of angle bisectors of a triangle.

Vocabulary concurrent point of concurrency circumcenter of a triangle circumscribed incenter of a triangle inscribed

Since a triangle has three sides, it has three perpendicular bisectors Since a triangle has three sides, it has three perpendicular bisectors. When you construct the perpendicular bisectors, you find that they have an interesting property.

The perpendicular bisector of a side of a triangle does not always pass through the opposite vertex. Helpful Hint

When three or more lines intersect at one point, the lines are said to be concurrent. The point of concurrency is the point where they intersect. In the construction, you saw that the three perpendicular bisectors of a triangle are concurrent. This point of concurrency is the circumcenter of the triangle.

Draw a large scalene triangle ABC on a piece of patty paper. Fold the perpendicular bisector of each side. Label the point where the three perpendicular bisectors intersect as P. Measure the distance of PA, PB and PC.

The circumcenter can be inside the triangle, outside the triangle, or on the triangle.

The circumcenter of ΔABC is the center of its circumscribed circle The circumcenter of ΔABC is the center of its circumscribed circle. A circle that contains all the vertices of a polygon is circumscribed about the polygon.

Example 1: Using Properties of Perpendicular Bisectors DG, EG, and FG are the perpendicular bisectors of ∆ABC. Find GC. G is the circumcenter of ∆ABC. By the Circumcenter Theorem, G is equidistant from the vertices of ∆ABC. GC = GB Circumcenter Thm. GC = 13.4 Substitute 13.4 for GB.

Check It Out! Example 1a Use the diagram. Find GM. MZ is a perpendicular bisector of GJ. GM = MJ Perpendic. Bisector Thm. GM = 14.5 Substitute 14.5 for MJ.

Check It Out! Example 1b Use the diagram. Find GK. KZ is a perpendicular bisector of ∆GHJ. GK = KH Perpendic. Bisector Thm. GK = 18.6 Substitute 18.6 for KH.

Check It Out! Example 1c Use the diagram. Find JZ. Z is the circumcenter of ∆GHJ. By the Circumcenter Theorem, Z is equidistant from the vertices of ∆GHJ. JZ = GZ Circumcenter Thm. JZ = 19.9 Substitute 19.9 for GZ.

Example 2: Finding the Circumcenter of a Triangle Find the circumcenter of ∆HJK with vertices H(0, 0), J(10, 0), and K(0, 6). Step 1 Graph the triangle.

Example 2 Continued Step 2 Find equations for two perpendicular bisectors. Since two sides of the triangle lie along the axes, use the graph to find the perpendicular bisectors of these two sides. The perpendicular bisector of HJ is x = 5, and the perpendicular bisector of HK is y = 3.

Example 2 Continued Step 3 Find the intersection of the two equations. The lines x = 5 and y = 3 intersect at (5, 3), the circumcenter of ∆HJK.

Check It Out! Example 2 Find the circumcenter of ∆GOH with vertices G(0, –9), O(0, 0), and H(8, 0) . Step 1 Graph the triangle.

Check It Out! Example 2 Continued Step 2 Find equations for two perpendicular bisectors. Since two sides of the triangle lie along the axes, use the graph to find the perpendicular bisectors of these two sides. The perpendicular bisector of GO is y = –4.5, and the perpendicular bisector of OH is x = 4.

Check It Out! Example 2 Continued Step 3 Find the intersection of the two equations. The lines x = 4 and y = –4.5 intersect at (4, –4.5), the circumcenter of ∆GOH.