Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams

Slides:



Advertisements
Similar presentations
6.1 Transistor Operation 6.2 The Junction FET
Advertisements

Spring 2007EE130 Lecture 29, Slide 1 Lecture #29 ANNOUNCEMENTS Reminder: Quiz #4 on Wednesday 4/4 No Office Hour or Coffee Hour on Wednesday Tsu-Jae will.
Spring 2007EE130 Lecture 34, Slide 1 Lecture #34 OUTLINE The MOS Capacitor: MOS non-idealities (cont.) V T adjustment Reading: Chapter 18.3.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Lecture 2 OUTLINE Important quantities Semiconductor Fundamentals (cont’d) – Energy band model – Band gap energy – Density of states – Doping Reading:
Semiconductor Devices 27
Taklimat UniMAP Universiti Malaysia Perlis WAFER FABRICATION Hasnizah Aris, 2008 Lecture 2 Semiconductor Basic.
Lecture 1b - Review Kishore C Acharya. 2 Building Semiconductor Devices To build semiconductor devices # of carriers present in the semiconductor must.
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
ECE 4339 L. Trombetta ECE 4339: Physical Principles of Solid State Devices Len Trombetta Summer 2007 Chapters 16-17: MOS Introduction and MOSFET Basics.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d) – Thermal equilibrium – Fermi-Dirac distribution Boltzmann approximation – Relationship between E.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
1 Semiconductor Devices  Metal-semiconductor junction  Rectifier (Schottky contact or Schottky barrier)  Ohmic contact  p – n rectifier  Zener diode.
MOS capacitor before joining The metallic gate may be replaced with a heavily doped p+ polysilicon gate. The Fermi energy levels are approximately at.
EE130/230A Discussion 10 Peng Zheng.
MOS Transistor Theory The MOS transistor is a majority carrier device having the current in the conducting channel being controlled by the voltage applied.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
L ECE 4243/6243 Fall 2016 UConn F. Jain Notes Chapter L11 (page ). FET Operation slides Scaling Laws of FETs (slides 9-22)
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 2 OUTLINE Important quantities
Revision CHAPTER 6.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
Intro to Semiconductors and p-n junction devices
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
EMT362: Microelectronic Fabrication CMOS ISOLATION TECHNOLOGY Part 1
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Read: Chapter 2 (Section 2.2)
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 7 OUTLINE Poisson’s equation Work function
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Optional Reading: Pierret 4; Hu 3
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
MOS Capacitor Basics Metal SiO2
FROM DOPED SEMICONDUCTORS TO SEMICONDUCTOR DEVICES
Lecture 7 OUTLINE Poisson’s equation Work function
Long Channel MOS Transistors
EE130/230A Discussion 5 Peng Zheng.
Chapter 4.1 Metal-semiconductor (MS) junctions
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
EE130/230A Discussion 8 Peng Zheng.
Sung June Kim Chapter 16. MOS FUNDAMENTALS Sung June Kim
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts
Lecture 17 OUTLINE The MOS Capacitor (cont’d) Small-signal capacitance
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Lecture 6 OUTLINE Semiconductor Fundamentals (cont’d)
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
VFB = 1/q (G- S).
Beyond Si MOSFETs Part 1.
VFB = 1/q (G- S).
Presentation transcript:

Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams Reading: Pierret 16.1-16.2, 18.1; Hu 5.1

MOS Capacitor Structure (cross-sectional view) MOS devices today employ: degenerately doped polycrystalline Si (“poly-Si”) film as the gate-electrode material n+-type for “n-channel” transistors p+-type, for “p-channel” transistors SiO2 as the gate dielectric band gap = 9 eV er,SiO2 = 3.9 Si as the semiconductor material p-type, for “n-channel” transistors n-type, for “p-channel” transistors GATE xo Semiconductor + VG _ EE130/230M Spring 2013 Lecture 15, Slide 2

MOS Equilibrium Band Diagram metal oxide semiconductor n+ poly-Si SiO2 EC p-type Si EC=EFM EFS EV EV EE130/230M Spring 2013 Lecture 15, Slide 3

MOS Band Diagrams: Guidelines Fermi level EF is flat (constant with x) within the semiconductor Since no current flows in the x direction, we can assume that equilibrium conditions prevail Band bending is linear within the oxide No charge in the oxide => dE/dx = 0 so E is constant => dEc/dx is constant From Gauss’ Law, we know that the electric field strength in the Si at the surface, ESi, is related to the electric field strength in the oxide, Eox: E E E EE130/230M Spring 2013 Lecture 15, Slide 4

MOS Band Diagram Guidelines (cont’d) The barrier height for conduction-band electron flow from the Si into SiO2 is 3.1 eV This is equal to the electron-affinity difference (cSi and cSiO2) The barrier height for valence-band hole flow from the Si into SiO2 is 4.8 eV The vertical distance between the Fermi level in the metal, EFM, and the Fermi level in the Si, EFS, is equal to the applied gate voltage: EE130/230M Spring 2013 Lecture 15, Slide 5

Special Case: Equal Work Functions FM = FS EE130/230M Spring 2013 Lecture 15, Slide 6

General Case: Different Work Functions EE130/230M Spring 2013 Lecture 15, Slide 7

Flat-Band Condition EE130/230M Spring 2013 Lecture 15, Slide 8