Objectives Recognize and extend an arithmetic sequence.

Slides:



Advertisements
Similar presentations
4-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Advertisements

Learning Objective Students will be able to: Recognize and extend an arithmetic sequence and find a given term of an arithmetic sequence.
3-6 Arithmetic Sequences
4.7 Arithmetic Sequences A sequence is a set of numbers in a specific order. The numbers in the sequence are called terms. If the difference between successive.
Arithmetic Sequences Section 4.5. Preparation for Algebra ll 22.0 Students find the general term and the sums of arithmetic series and of both finite.
EXAMPLE 2 Write a rule for the nth term a. 4, 9, 14, 19,... b. 60, 52, 44, 36,... SOLUTION The sequence is arithmetic with first term a 1 = 4 and common.
11-1 Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
9-1 Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
Holt Algebra Geometric Sequences 11-1 Geometric Sequences Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Arithmetic Sequences.
Lesson 4-7 Arithmetic Sequences.
Algebra1 Arithmetic Sequences
Explicit & Recursive Formulas.  A Sequence is a list of things (usually numbers) that are in order.  2 Types of formulas:  Explicit & Recursive Formulas.
Draw the next three shapes in the pattern Can You Find the Pattern? 4. 20, 16, 12, 8, ___, ___, __ 5. -9, -4, 1, 6, ___, ___, ___ 6. 1, 10, 100,
3-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
4-5 Arithmetic Sequences Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Arithmetic Sequences. Language Goal  Students will be able recognize and extend an arithmetic sequence. Math Goal  Students will be able to find a given.
Holt McDougal Algebra Arithmetic Sequences Recognize and extend an arithmetic sequence. Find a given term of an arithmetic sequence. Objectives.
Test Averages Second Period86.00 Fourth Period82.60 Sixth Period85.26 Seventh Period Eighth Period.
4-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Coordinate Algebra Arithmetic and Geometric Sequences Learning Target: Students can use the explicit formula to find the n th term of a sequence.
Holt Algebra Arithmetic Sequences During a thunderstorm, you can estimate your distance from a lightning strike by counting the number of seconds.
Holt Algebra Arithmetic Sequences Solve the compound inequality and graph the solutions. 8 < 3x – 1 ≤ 11 3 < x ≤ 4 –5 –4 –3–2 –
Holt McDougal Algebra 1 Geometric Sequences Recognize and extend geometric sequences. Find the nth term of a geometric sequence. Objectives.
Holt McDougal Algebra Arithmetic Sequences 3-6 Arithmetic Sequences Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
How can exponential functions be identified through tables, graphs, and equations? How are the laws of exponents used to simplify and evaluate algebraic.
Arithmetic Sequences.
Recognize and extend arithmetic sequences
Arithmetic Sequences as Functions
Arithmetic Sequences.
Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
9-1 Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
4-7 Arithmetic Sequences
Welcome! Grab a set of interactive notes Begin Working Let’s Recall
Homework: Part I Find the next three terms in each geometric sequence.
Generate ordered pairs for each function for x=-2, -1, 0, 1, 2.
3-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Preview Warm Up California Standards Lesson Presentation.
Test Averages Second Period Fourth Period 82.60
3-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
9-1 Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
Arithmetic Sequences in Recursive Form
4.7: Arithmetic sequences
3-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Warm Up Evaluate..
3-4: Arithmetic Sequences
3-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Lesson 3-6 Arithmetic Sequences
Sequences.
Learning Objective Students will be able to: Recognize and extend an arithmetic sequence and find a given term of an arithmetic sequence.
Objectives Find the indicated terms of an arithmetic sequence.
Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Learning Targets Students will be able to: Recognize and extend geometric sequences and find the nth term of a geometric sequence.
Sequences.
Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Lesson 3-6 Arithmetic Sequences
4-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
Warm-Up Write the first five terms of an = 4n + 2 a1 = 4(1) + 2
3-6 Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
9-1 Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
Recognizing and extending arithmetic sequences
Linear sequences A linear sequence is a list of numbers that have a common difference between each number in the list. Finding the rule that can extend.
Arithmetic Sequences Warm Up Lesson Presentation Lesson Quiz
Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
11-1 Geometric Sequences Warm Up Lesson Presentation Lesson Quiz
Objectives Recognize and extend an arithmetic sequence.
Presentation transcript:

Objectives Recognize and extend an arithmetic sequence. Find a given term of an arithmetic sequence.

During a thunderstorm, you can estimate your distance from a lightning strike by counting the number of seconds from the time you see the lightning until you hear the thunder. When you list the times and distances in order, each list forms a sequence. A sequence is a list of numbers that often forms a pattern. Each number in a sequence is a term.

Time (s) 1 2 3 4 5 6 7 8 Time (s) Distance (mi) Distance (mi) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 +0.2 Notice that in the distance sequence, you can find the next term by adding 0.2 to the previous term. When the terms of a sequence differ by the same nonzero number d, the sequence is an arithmetic sequence and d is the common difference. So the distances in the table form an arithmetic sequence with the common difference of 0.2.

Example 1A Continued Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms. 9, 13, 17, 21,… Step 2 Use the common difference to find the next 3 terms. 9, 13, 17, 21, 25, 29, 33,… +4 The sequence appears to be an arithmetic sequence with a common difference of 4. The next three terms are 25, 29, 33.

Example 1B: Identifying Arithmetic Sequences Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms. 10, 8, 5, 1,… Find the difference between successive terms. 10, 8, 5, 1,… The difference between successive terms is not the same. –2 –3 –4 This sequence is not an arithmetic sequence.

Check It Out! Example 1a Continued Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms. The sequence appears to be an arithmetic sequence with a common difference of . The next three terms are , . Step 2 Use the common difference to find the next 3 terms.

Check It Out! Example 1c Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms. –4, –2, 1, 5,… Step 1 Find the difference between successive terms. –4, –2, 1, 5,… The difference between successive terms is not the same. +2 +3 +4 This sequence is not an arithmetic sequence.

Check It Out! Example 1d Determine whether the sequence appears to be an arithmetic sequence. If so, find the common difference and the next three terms. 4, 1, –2, –5,… Step 1 Find the difference between successive terms. 4, 1, –2, –5,… You add –3 to each term to find the next term. The common difference is –3. –3

The variable a is often used to represent terms in a sequence The variable a is often used to represent terms in a sequence. The variable a9, read “a sub 9,” is the ninth term, in a sequence. To designate any term, or the nth term in a sequence, you write an, where n can be any number. 1 2 3 4… n Position 3, 5, 7, 9… Term a1 a2 a3 a4 an The sequence above starts with 3. The common difference d is 2. You can use the first term and the common difference to write a rule for finding an.

Example 2A: Finding the nth Term of an Arithmetic Sequence Find the indicated term of the arithmetic sequence. 16th term: 4, 8, 12, 16, … Step 1 Find the common difference. 4, 8, 12, 16,… The common difference is 4. +4 +4 +4 Step 2 Write a rule to find the 16th term. an = a1 + (n – 1)d Write a rule to find the nth term. a16 = 4 + (16 – 1)(4) Substitute 4 for a1,16 for n, and 4 for d. = 4 + (15)(4) Simplify the expression in parentheses. = 4 + 60 Multiply. The 16th term is 64. = 64 Add.

Example 2B: Finding the nth Term of an Arithmetic Sequence Find the indicated term of the arithmetic sequence. The 25th term: a1 = –5; d = –2 an = a1 + (n – 1)d Write a rule to find the nth term. Substitute –5 for a1, 25 for n, and –2 for d. a25 = –5 + (25 – 1)(–2) = –5 + (24)(–2) Simplify the expression in parentheses. = –5 + (–48) Multiply. = –53 Add. The 25th term is –53.

Check It Out! Example 2a Find the indicated term of the arithmetic sequence. 60th term: 11, 5, –1, –7, … Step 1 Find the common difference. 11, 5, –1, –7,… The common difference is –6. –6 –6 –6 Step 2 Write a rule to find the 60th term. an = a1 + (n – 1)d Write a rule to find the nth term. Substitute 11 for a1, 60 for n, and –6 for d. a60 = 11 + (60 – 1)(–6) = 11 + (59)(–6) Simplify the expression in parentheses. = 11 + (–354) Multiply. = –343 Add. The 60th term is –343.

Check It Out! Example 2b Find the indicated term of the arithmetic sequence. 12th term: a1 = 4; d = 3 an = a1 + (n – 1)d Write a rule to find the nth term. Substitute 4 for a1,12 for n, and 3 for d. a12 = 4 + (12 – 1)(3) Simplify the expression in parentheses. = 4 + (11)(3) = 4 + (33) Multiply. = 37 Add. The 12th term is 37.

Example 3: Application A bag of cat food weighs 18 pounds. Each day, the cats are feed 0.5 pound of food. How much does the bag of cat food weigh after 30 days? Step 1 Determine whether the situation appears to be arithmetic. The sequence for the situation is arithmetic because the cat food decreases by 0.5 pound each day. Step 2 Find d, a1, and n. Since the weight of the bag decrease by 0.5 pound each day, d = –0.5. Since the bag weighs 18 pounds to start, a1 = 18. Since you want to find the weight of the bag after 30 days, you will need to find the 31st term of the sequence so n = 31.

Example 3 Continued Step 3 Find the amount of cat food remaining for an. an = a1 + (n – 1)d Write the rule to find the nth term. Substitute 18 for a1, –0.5 for d, and 31 for n. a31 = 18 + (31 – 1)(–0.5) = 18 + (30)(–0.5) Simplify the expression in parentheses. = 18 + (–15) Multiply. = 3 Add. There will be 3 pounds of cat food remaining after 30 days.

Check It Out! Example 3 Each time a truck stops, it drops off 250 pounds of cargo. It started with a load of 2000 pounds. How much does the load weigh after the 5th stop? Step 1 Determine whether the situation appears to be arithmetic. The sequence for the situation is arithmetic because the load is decreased by 250 pounds at each stop. Step 2 Find d,a1, and n. Since the load will be decreasing by 250 pounds at each stop, d = –250. Since the load is 2000 pounds, a1 = 2000. Since you want to find the load after the 5th stop, you will need to find the 6th term of the sequence, so n = 6.

Check It Out! Example 3 Continued Step 3 Find the amount of cargo remaining for an. an = a1 + (n – 1)d Write the rule to find the nth term. Substitute 2000 for a1, –250 for d, and 6 for n. a6 = 2000 + (6 – 1)(–250) Simplify the expression in parenthesis. = 2000 + (5)(–250) = 2000 + (–1250) Multiply. = 750 Add. There will be 750 pounds of cargo remaining after 5 stops.