External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter 2: The Entity-Relationship Model Chapter 3: The Relational Model Chapter 4 (Part A): Relational Algebra Chapter 4 (Part B): Relational Calculus Chapter 5: SQL: Queries, Programming, Triggers Chapter 6: Query-by-Example (QBE) Chapter 7: Storing Data: Disks and Files Chapter 8: File Organizations and Indexing Chapter 9: Tree-Structured Indexing Chapter 10: Hash-Based Indexing Chapter 11: External Sorting Chapter 12 (Part A): Evaluation of Relational Operators Chapter 12 (Part B): Evaluation of Relational Operators: Other Techniques Chapter 13: Introduction to Query Optimization Chapter 14: A Typical Relational Optimizer Chapter 15: Schema Refinement and Normal Forms Chapter 16 (Part A): Physical Database Design Chapter 16 (Part B): Database Tuning Chapter 17: Security Chapter 18: Transaction Management Overview Chapter 19: Concurrency Control Chapter 20: Crash Recovery Chapter 21: Parallel and Distributed Databases Chapter 22: Internet Databases Chapter 23: Decision Support Chapter 24: Data Mining Chapter 25: Object-Database Systems Chapter 26: Spatial Data Management Chapter 27: Deductive Databases Chapter 28: Additional Topics 1
Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing gpa order Sorting is first step in bulk loading B+ tree index. Sorting useful for eliminating duplicate copies in a collection of records (Why?) Sort-merge join algorithm involves sorting. Problem: sort 1Gb of data with 1Mb of RAM. why not virtual memory? 4
2-Way Sort: Requires 3 Buffers Pass 1: Read a page, sort it, write it. only one buffer page is used Pass 2, 3, …, etc.: three buffer pages used. INPUT 1 OUTPUT INPUT 2 Main memory buffers Disk Disk 5
Two-Way External Merge Sort 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file Each pass we read + write each page in file. N pages in the file => the number of passes So toal cost is: Idea: Divide and conquer: sort subfiles and merge PASS 0 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs PASS 1 2,3 4,7 1,3 2-page runs 4,6 8,9 5,6 2 PASS 2 2,3 4,4 1,2 4-page runs 6,7 3,5 8,9 6 PASS 3 1,2 2,3 3,4 8-page runs 4,5 6,6 7,8 9 6
General External Merge Sort More than 3 buffer pages. How can we utilize them? To sort a file with N pages using B buffer pages: Pass 0: use B buffer pages. Produce sorted runs of B pages each. Pass 2, …, etc.: merge B-1 runs. INPUT 1 . . . INPUT 2 . . . . . . OUTPUT INPUT B-1 Disk Disk B Main memory buffers 7
Cost of External Merge Sort Number of passes: Cost = 2N * (# of passes) E.g., with 5 buffer pages, to sort 108 page file: Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages) Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages) Pass 2: 2 sorted runs, 80 pages and 28 pages Pass 3: Sorted file of 108 pages 8
Number of Passes of External Sort 9
I/O for External Merge Sort … longer runs often means fewer passes! Actually, do I/O a page at a time In fact, read a block of pages sequentially! Suggests we should make each buffer (input/output) be a block of pages. But this will reduce fan-out during merge passes! In practice, most files still sorted in 2-3 passes.
Number of Passes of Optimized Sort Block size = 32, initial pass produces runs of size 2B. 13
Double Buffering To reduce wait time for I/O request to complete, can prefetch into `shadow block’. Potentially, more passes; in practice, most files still sorted in 2-3 passes. INPUT 1 INPUT 1' INPUT 2 OUTPUT INPUT 2' OUTPUT' b block size Disk INPUT k Disk INPUT k' B main memory buffers, k-way merge
Sorting Records! Sorting has become a blood sport! Parallel sorting is the name of the game ... Datamation: Sort 1M records of size 100 bytes Typical DBMS: 15 minutes World record: 3.5 seconds 12-CPU SGI machine, 96 disks, 2GB of RAM New benchmarks proposed: Minute Sort: How many can you sort in 1 minute? Dollar Sort: How many can you sort for $1.00?
Summary External sorting is important; DBMS may dedicate part of buffer pool for sorting! External merge sort minimizes disk I/O cost: Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs. # of runs merged at a time depends on B, and block size. Larger block size means less I/O cost per page. Larger block size means smaller # runs merged. In practice, # of runs rarely more than 2 or 3. The best sorts are wildly fast: Despite 40+ years of research, we’re still improving! 19