Research Institute for Future Media Computing

Slides:



Advertisements
Similar presentations
DFT & FFT Computation.
Advertisements

DFT properties Note: it is important to ensure that the DFTs are the same length If x1(n) and x2(n) have different lengths, the shorter sequence must be.
Block Convolution: overlap-save method  Input Signal x[n]: arbitrary length  Impulse response of the filter h[n]: lenght P  Block Size: N  we take.
OPTIMUM FILTERING.
Chapter 8: The Discrete Fourier Transform
FFT-based filtering and the Short-Time Fourier Transform (STFT) R.C. Maher ECEN4002/5002 DSP Laboratory Spring 2003.
EE-2027 SaS, L11 1/13 Lecture 11: Discrete Fourier Transform 4 Sampling Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
UML 对象设计与编程 主 讲 : 董兰芳 副教授 Dept. of Computer Science,USTC
中国科学技术大学视觉计算与可视化实验室 讨论题目 _ 时间 讨论题目 演讲人: ** 指导教师: ** 老师 中国科学技术大学计算机学院 2005 年 6 月 28 日.
1 Online Research on Taiwan-U.S.-China Relations 童振源 國立政治大學 中山人文社會科學研究所 助理教授.
Analysis of Discrete Linear Time Invariant Systems
机器学习 陈昱 北京大学计算机科学技术研究所 信息安全工程研究中心. Concept Learning Reference : Ch2 in Mitchell’s book 1. Concepts: Inductive learning hypothesis General-to-specific.
PrivacyShield: Real-time Monitoring and Detection of Android Privacy Leakage For Potential Collaboration 1 Yan Chen Lab of Internet and Security Technology.
8.1 representation of periodic sequences:the discrete fourier series 8.2 the fourier transform of periodic signals 8.3 properties of the discrete fourier.
Digital Signal Processing – Chapter 10
CS 179: GPU Programming Lecture 9 / Homework 3. Recap Some algorithms are “less obviously parallelizable”: – Reduction – Sorts – FFT (and certain recursive.
Delivering the System 中国科学技术大学软件学院 孟宁 2012 年 11 月.
复旦大学新视野系列研究生课程:科研论文的构思、撰写和发表 怎样做一个好研究生 教育部长江学者奖励计划讲座教授 复旦大学生命科学学院院长 金 力.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
Hossein Sameti Department of Computer Engineering Sharif University of Technology.
神经信息学Neuroinformatics Spring semester, LECTURE 1 Introduction.
1 南京大学古籍保护的现状与 今后的发展思路 史 梅 2009 年 9 月省古籍保护会议. 2 一、南京大学的古籍收藏 二、古籍保护的现状 三、今后的发展思路.
Digital Signal Processing Chapter 3 Discrete transforms.
Z TRANSFORM AND DFT Z Transform
Lecture 6: DFT XILIANG LUO 2014/10. Periodic Sequence  Discrete Fourier Series For a sequence with period N, we only need N DFS coefs.
Chapter 5 Finite-Length Discrete Transform
教学研究介绍 福民小学 林建庚 QQ: TEL:
Digital Signal Processing
一个大学生眼里的移动互联网. file://\\ibhks021\halfway\Template Design by HK Presentation\POWERPOINT TEMPLATE\Dubai\Slide_v1.psd file://\\ibhks021\halfway\Template.
Linear filtering based on the DFT
Signals and Systems Lecture 19: FIR Filters. 2 Today's lecture −System Properties:  Linearity  Time-invariance −How to convolve the signals −LTI Systems.
Exercise for Address 深圳市南山区科技园南区清华大学研究 院培训中心 419 号公寓( ) A419, Training Center, Tsinghua Institute, South Hi-Tech Park, South Mountain District,
蹲点联校与拓展型课题研究 情况介绍 喻照安 本人蹲点联校之学校 拓展型课题名称 蹲点学校:当阳市实验中学 宜昌市 22 中学 宜昌市 27 中学 拓展型研究课题: “ 对话教学,灵动未央 ” 教育研究.
CS 179: GPU Programming Lecture 9 / Homework 3. Recap Some algorithms are “less obviously parallelizable”: – Reduction – Sorts – FFT (and certain recursive.
1 Computing the output response of LTI Systems. By breaking or decomposing and representing the input signal to the LTI system into terms of a linear combination.
Digital Signal Processing
EE345S Real-Time Digital Signal Processing Lab Fall 2006 Lecture 17 Fast Fourier Transform Prof. Brian L. Evans Dept. of Electrical and Computer Engineering.
Dr. Michael Nasief Digital Signal Processing Lec 7 1.
بسم الله الرحمن الرحيم Digital Signal Processing Lecture 14 FFT-Radix-2 Decimation in Frequency And Radix -4 Algorithm University of Khartoum Department.
EENG 420 Digital Signal Processing Lecture 2.
1 Chapter 8 The Discrete Fourier Transform (cont.)
 Carrier signal is strong and stable sinusoidal signal x(t) = A cos(  c t +  )  Carrier transports information (audio, video, text, ) across.
Homework 3 1. Suppose we have two four-point sequences x[n] and h[n] as follows: (a) Calculate the four-point DFT X[k]. (b) Calculate the four-point DFT.
DIGITAL SIGNAL PROCESSING ELECTRONICS
Digital Signal Processing
Properties of LTI Systems
Research Institute for Future Media Computing
FFT-based filtering and the
学 术 报 告 ACADEMIC LECTURE 报告人:澳大利亚 Macquarie大学
Fast Fourier Transform
4.1 DFT In practice the Fourier components of data are obtained by digital computation rather than by analog processing. The analog values have to be.
Chapter 8 The Discrete Fourier Transform
APPLICATION of the DFT: Convolution of Finite Sequences.
Z TRANSFORM AND DFT Z Transform
CS3291: "Interrogation Surprise" on Section /10/04
Lecture 16 Outline: Linear Convolution, Block-by Block Convolution, FFT/IFFT Announcements: HW 4 posted, due tomorrow at 4:30pm. No late HWs as solutions.
Research Institute for Future Media Computing
Signal Processing First
Chapter 8 The Discrete Fourier Transform
Research Institute for Future Media Computing
Research Institute for Future Media Computing
Randomized computation
Chapter 8 The Discrete Fourier Transform
Research Institute for Future Media Computing
英国伯明翰大学 Zhibing Zhang教授 学术报告
Convolution sum.
Signals and Systems Lecture 18: FIR Filters.
Space complexity 姚鹏晖 助教: 刘明谋 答疑时间: 周四 2pm-4pm, 计算机科学与技术楼 502
Fast Fourier Transform
CE Digital Signal Processing Fall Discrete Fourier Transform (DFT)
Presentation transcript:

Research Institute for Future Media Computing 未来媒体技术与计算研究所 Research Institute for Future Media Computing http://futuremedia.szu.edu.cn Tutorial 3. Key Operation on Signals: Convolution 江健民,国家千人计划特聘教授 深圳大学未来媒体技术与计算研究所所长 Office Room: 409 Email: jianmin.jiang@szu.edu.cn http://futuremedia.szu.edu.cn

Problem: Given two sequences x(n)={1, 3, 2, -3, 0, 2, -1, 0, -2, 3, -2, 1 …}(N1=?), and h(n)={1, 0, 1} (N2=3), calculate the convolution of these two sequences. Solution via Overlap-add: Divide x(n) into sections of length N1=6; x1(n)={1, 3, 2, -3, 0, 2}; x2(n)={-1, 0, -2, 3, -2, 1}; N=N1+N2-1 = 8 = 2d (d=3), satisfying the requirements for use of a radix-2 FFT; Apply FFT to calculate circular convolution, x1(n)*h(n) and x2(n)*h(n), and then overlap-add to derive the linear convolution of x(n)*h(n).

Specific Solutions: Augmenting zeros to x1(n), x2(n), and h(n) as follows: x’1(n)={1, 3, 2, -3, 0, 2, 0, 0}; x’2(n)={-1, 0, -2, 3, -2, 1, 0, 0}; h’(n)={1, 0, 1, 0, 0, 0, 0, 0} y1(0)= h’(0)x’1(0)=1; y1(1)=h’(0)x’1(1)+h’(1)x’1(0)=3; y1(2)=h’(0)x’1(2)+h’(1)x’1(1)+h’(0)x’1(0)=3; y1(3)=h’(0)x1(3)+h’(1)x1(2)+h’(2)x1(1)+h’(1)x1(2)…=0; … Y1(n)={1, 3, 3, 0, 2, -1, 0, 2}; y2(n)={-1, 0, -3, 1, -4, 4, -2, -1}

Y1(n)={1, 3, 3, 0, 2, -1, 0, 2}; y2(n)={0, 0, 0, 0, 0, 0, -1, 0, -3, 1, -4, 4, -2, -1} Y(n)=y1(n)+y2(n) = {1, 3, 3, 0, 2, -1, -1, 2, -3, 1, -4, 4, -2, -1} Exercise: Use linear convolution to verify that the above results are correct.