Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers by Andrea.

Slides:



Advertisements
Similar presentations
Heather J. Symons, Moshe Y
Advertisements

Recombinant CD95-Fc (APG101) prevents graft-versus-host disease in mice without disabling antitumor cytotoxicity and T-cell functions by Natalie Hartmann,
Joseph H. Chewning, Weiwei Zhang, David A. Randolph, C
by Peter Ruf, and Horst Lindhofer
Cheng-Ming Sun, Edith Deriaud, Claude Leclerc, Richard Lo-Man  Immunity 
Involvement of suppressors of cytokine signaling in toll-like receptor–mediated block of dendritic cell differentiation by Holger Bartz, Nicole M. Avalos,
Host-Derived CD8+ Dendritic Cells Protect Against Acute Graft-versus-Host Disease after Experimental Allogeneic Bone Marrow Transplantation  Michael Weber,
William H. D. Hallett, Weiqing Jing, William R. Drobyski, Bryon D
Secondary Lymphoid Organs Contribute to, but Are Not Required for the Induction of Graft-versus-Host Responses following Allogeneic Bone Marrow Transplantation:
Influence of Donor Microbiota on the Severity of Experimental Graft-versus-Host- Disease  Isao Tawara, Chen Liu, Hiroya Tamaki, Tomomi Toubai, Yaping Sun,
Heat shock protein vaccination and directed IL-2 therapy amplify tumor immunity rapidly following bone marrow transplantation in mice by Robert G. Newman,
Induction of Immunity to Neuroblastoma Early after Syngeneic Hematopoietic Stem Cell Transplantation Using a Novel Mouse Tumor Vaccine  Weiqing Jing,
by Yoshinobu Maeda, Pavan Reddy, Kathleen P
Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte.
Ping Zhang, Jieying Wu, Divino Deoliveira, Nelson J. Chao, Benny J
Apoptotic Donor Leukocytes Limit Mixed-Chimerism Induced by CD40-CD154 Blockade in Allogeneic Bone Marrow Transplantation  Jian-ming Li, John Gorechlad,
Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34+ cells by Christian P. Kalberer, Uwe Siegler, and Aleksandra Wodnar-Filipowicz.
by Silke Huber, Reinhard Hoffmann, Femke Muskens, and David Voehringer
William H. D. Hallett, Weiqing Jing, William R. Drobyski, Bryon D
Following the Development of a CD4 T Cell Response In Vivo
Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging by Matthias Edinger, Yu-An Cao, Michael R. Verneris,
Induction of heme oxygenase-1 before conditioning results in improved survival and reduced graft-versus-host disease after experimental allogeneic bone.
by Norman Nausch, Ioanna E
Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease by Tomomi Toubai, Yaping Sun, Isao Tawara, Ann Friedman,
Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells by Wuding Zhou, Hetal Patel, Ke Li, Qi Peng, Marie-Bernadette.
Ex Vivo Rapamycin Generates Th1/Tc1 or Th2/Tc2 Effector T Cells With Enhanced In Vivo Function and Differential Sensitivity to Post-transplant Rapamycin.
IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation by Christoph Bucher, Lisa Koch, Christine.
The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease by Shan He, Fang.
Acceleration of idiopathic pneumonia syndrome (IPS) in the absence of donor MIP-1α (CCL3) after allogeneic BMT in mice by Angela Panoskaltsis-Mortari,
by Sheng F. Cai, Xuefang Cao, Anjum Hassan, Todd A
PreImplantation Factor Reduces Graft-versus-Host Disease by Regulating Immune Response and Lowering Oxidative Stress (Murine Model)  Yehudith Azar, Reut.
IL-17 Gene Ablation Does Not Impact Treg-Mediated Suppression of Graft-Versus-Host Disease after Bone Marrow Transplantation  Lucrezia Colonna, Mareike.
Graft-Versus-Leukemia Effect and Graft-Versus-Host Disease Can Be Differentiated by Cytotoxic Mechanisms in a Murine Model of Allogeneic Bone Marrow Transplantation.
Evelyn C. Nieves, Tomomi Toubai, Daniel C
Vaccination regimens incorporating CpG-containing oligodeoxynucleotides and IL-2 generate antigen-specific antitumor immunity from T-cell populations undergoing.
Pharmacologic Expansion of Donor-Derived, Naturally Occurring CD4+Foxp3+ Regulatory T Cells Reduces Acute Graft-versus-Host Disease Lethality Without.
Inhibition of Cathepsin S Reduces Allogeneic T Cell Priming but Not Graft-versus-Host Disease Against Minor Histocompatibility Antigens  Hisaki Fujii,
Xinchun Chen, Yi Zeng, Gang Li, Nicolas Larmonier, Michael W
Volume 13, Issue 1, Pages (January 2006)
The Pentostatin Plus Cyclophosphamide Nonmyeloablative Regimen Induces Durable Host T Cell Functional Deficits and Prevents Murine Marrow Allograft Rejection 
Blocking Activator Protein 1 Activity in Donor Cells Reduces Severity of Acute Graft- Versus-Host Disease through Reciprocal Regulation of IL-17–Producing.
Essential Role of Interleukin-12/23p40 in the Development of Graft-versus-Host Disease in Mice  Yongxia Wu, David Bastian, Steven Schutt, Hung Nguyen,
Volume 16, Issue 4, Pages (April 2002)
Volume 13, Issue 1, Pages (January 2006)
T helper17 Cells Are Sufficient But Not Necessary to Induce Acute Graft-Versus-Host Disease  Cristina Iclozan, Yu Yu, Chen Liu, Yaming Liang, Tangsheng.
Augmentation of antitumor immune responses after adoptive transfer of bone marrow derived from donors immunized with tumor lysate-pulsed dendritic cells 
Host Basophils Are Dispensable for Induction of Donor T Helper 2 Cell Differentiation and Severity of Experimental Graft-versus-Host Disease  Isao Tawara,
A Radio-Resistant Perforin-Expressing Lymphoid Population Controls Allogeneic T Cell Engraftment, Activation, and Onset of Graft-versus-Host Disease in.
Dynamic Change and Impact of Myeloid-Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice  Dapeng Wang, Yu Yu, Kelley Haarberg,
Amotosalen-treated donor T cells have polyclonal antigen-specific long-term function without graft-versus-host disease after allogeneic bone marrow transplantation 
Tracking ex vivo-expanded CD4+CD25+ and CD8+CD25+ regulatory T cells after infusion to prevent donor lymphocyte infusion-induced lethal acute graft-versus-host.
Volume 29, Issue 6, Pages (December 2008)
Volume 13, Issue 2, Pages (February 2006)
Donor antigen-presenting cells regulate T-cell expansion and antitumor activity after allogeneic bone marrow transplantation  Jian-Ming Li, Edmund K.
Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD4+25+ T cells to allow an effective graft-versus-leukemia response 
Brile Chung, Eric Dudl, Akira Toyama, Lora Barsky, Kenneth I. Weinberg 
Early Vaccination with Tumor Lysate-Pulsed Dendritic Cells after Allogeneic Bone Marrow Transplantation Has Antitumor Effects  Jeffrey S. Moyer, Gabriel.
Volume 17, Issue 2, Pages (February 2009)
Lack of correlation between an assay used to determine early marrow allograft rejection and long-term chimerism after murine allogeneic bone marrow transplantation:
Raimon Duran-Struuck, Isao Tawara, Kathi Lowler, Shawn G
Serial vaccination with 32Dp210-derived whole cell vaccines in non-tumor-bearing mice stimulates robust antileukemic cytolytic activity. Serial vaccination.
Volume 17, Issue 5, Pages (May 2009)
Volume 20, Issue 3, Pages (March 2012)
Selective elimination of alloreactive donor T cells attenuates graft-versus-host disease and enhances T-cell reconstitution  Maria Gendelman, Maryam Yassai,
Volume 19, Issue 4, Pages (April 2011)
by Gonghua Huang, Yanyan Wang, Peter Vogel, and Hongbo Chi
Pretreatment of donor T cells with a c-Rel antagonist does not impair GVT activity. Pretreatment of donor T cells with a c-Rel antagonist does not impair.
Collapse of the Tumor Stroma is Triggered by IL-12 Induction of Fas
Rapamycin inhibits IL-4—induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo by Holger Hackstein, Timucin Taner,
Volume 37, Issue 2, Pages (August 2012)
Presentation transcript:

Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers by Andrea Boni, Pawel Muranski, Lydie Cassard, Claudia Wrzesinski, Chrystal M. Paulos, Douglas C. Palmer, Luca Gattinoni, Christian S. Hinrichs, Chi-Chao Chan, Steven A. Rosenberg, and Nicholas P. Restifo Blood Volume 112(12):4746-4754 December 1, 2008 ©2008 by American Society of Hematology

Allogeneic antitumor T lymphocyte persistence in vivo. Allogeneic antitumor T lymphocyte persistence in vivo. C57BL/6 mice bearing B16 tumors were irradiated with 5 or 9 Gy TBI and injected on day 0 with 106 allogeneic pmel-1b/d cells, vaccinia virus encoding hgp10025-33, and exogenous rhIL-2 (alloPVI) or with 106 syngeneic pmel-1b/b cells, vaccinia virus encoding hgp10025-33, and exogenous rhIL-2 (synPVI). All groups received syngeneic BMT with 106 unsorted bone marrow cells the day after the transfer of the effector cells. At the indicated time points, mice were killed, and the spleens were analyzed by flow cytometry for the presence of the transferred cells. (A) The dot plots show the percentage of CD8+ H-2 Dd+ cells. Allogeneic cells were detectable up to day 24 after transfer. (B) Absolute numbers of CD8+Vβ13+ cells present in the spleens of the animals. Each bar represents 3 mice plus or minus SE. Data are representative of 3 independent experiments. Andrea Boni et al. Blood 2008;112:4746-4754 ©2008 by American Society of Hematology

Allogeneic tumor-specific lymphocytes can mediate tumor regression after intensive lymphodepleting preparatory regimen. Allogeneic tumor-specific lymphocytes can mediate tumor regression after intensive lymphodepleting preparatory regimen. C57BL/6 mice bearing B16 tumors were left untreated (A) or irradiated with 9 Gy TBI (B). Mice were left untreated as a control (NT) or injected on day 0 with vaccinia virus encoding hgp100 and exogenous IL-2 (VI) or injected with 106 or 107 (as indicated) allogeneic pmel-1b/d cells, vaccine, and IL-2 (PVI). *P < .001. **P < .05. All groups received syngeneic BMT with 106 unsorted bone marrow cells the day after the transfer of the effector cells (day 1). Results of tumor area are the mean of measurements of at least 5 mice per group (± SEM). Data are representative of 4 independent experiments. Andrea Boni et al. Blood 2008;112:4746-4754 ©2008 by American Society of Hematology

Therapeutic efficacy of allogeneic cells correlates with the intensity of the lymphodepleting preparatory regimen. Therapeutic efficacy of allogeneic cells correlates with the intensity of the lymphodepleting preparatory regimen. C57BL/6 mice bearing B16 tumors were irradiated with 5, 7, 9, or 11 Gy TBI. For each irradiation dose, mice were left untreated as a control (NT) or injected on day 0 with 106 allogeneic pmel-1b/d cells, vaccinia virus encoding hgp100, and exogenous rhIL-2 (PVI). All groups received syngeneic BMT with 106 unsorted bone marrow cells the day after the transfer of the effector cells. Statistical results are as follows: 5 Gy NT versus 5 Gy PVI, not significant; 11 Gy NT versus 11 Gy PVI, P < .02; 5 Gy PVI versus 7 Gy PVI, P < .04; 7 Gy PVI versus 9 Gy PVI, P < .03. There was no statistical difference between mice receiving 9 Gy versus 11 Gy plus PVI. Results of tumor area are the mean of measurements of at least 5 mice per group (± SEM). Data are representative of 2 independent experiments. Andrea Boni et al. Blood 2008;112:4746-4754 ©2008 by American Society of Hematology

Allogeneic tumor-specific CD4+ cells cause tumor regression and ocular autoimmunity in lethally irradiated hosts. Allogeneic tumor-specific CD4+ cells cause tumor regression and ocular autoimmunity in lethally irradiated hosts. C57BL/6 mice bearing B16 tumors established for 12 days were irradiated with 9 Gy TBI. Mice were left untreated as a control (NT) or injected on day 0 with 106 allogeneic TRP-1b/d cells and exogenous IL-2 (AlloTI) or 106 syngeneic TRP-1b/b cells and exogenous IL-2 (SynTI). All groups received syngeneic BMT with 106 unsorted bone marrow cells the day after the transfer of the effector cells. (A) Spleens analyzed for the presence of transferred T cells at the indicated time points. The experiment was independently repeated with similar results. (B) B16 tumor growth in the different treatment groups. Results of tumor area are the mean of measurements of at least 5 mice per group (± SEM) (n = 5, 9, and 10 mice for NT, AlloTI, and SynTI, respectively, in the experiment shown). Data are representative of 3 independent experiments. (C) Hematoxylin and eosin staining of ocular tissue of mice killed at day 14. Images were obtained using a Nikon Eclipse E400 microscope equipped with Nuance Multispectral Imaging System VIS (original magnification ×100). Images were processed using Adobe Photoshop, version 7, as described in “Histology.” Andrea Boni et al. Blood 2008;112:4746-4754 ©2008 by American Society of Hematology

Bone marrow–derived lymphocytes are not necessary for allogeneic effector cell rejection. Bone marrow–derived lymphocytes are not necessary for allogeneic effector cell rejection. (A) C57BL/6 mice bearing B16 tumors were irradiated with 9 Gy TBI and injected on day 0 with 106 allogeneic pmel-1b/d cells, vaccinia virus encoding hgp100, and exogenous rhIL-2 (alloPVI) or with 106 syngeneic pmel-1b/b cells, vaccinia virus encoding hgp100, and exogenous rhIL-2 (synPVI). On the day after cell transfer, the mice received syngeneic BMT with 106 unsorted bone marrow cells derived either from wild-type animals (wt BM) or Rag1−/− (Rag1−/− BM) animals. Results of tumor area are the mean of measurements of at least 5 mice per group (± SEM). Data are representative of 2 independent experiments. (B) After 30 days, mice that received allogeneic effector cells were killed, and the spleens were analyzed by flow cytometry for the presence of the transferred cells. Allogeneic CD8+ H-2d+ cells were undetectable at day 30 in both allogeneic PVI groups independently of the type of bone marrow cells they received. Andrea Boni et al. Blood 2008;112:4746-4754 ©2008 by American Society of Hematology

GVHD-like reactions are doubtful when the TCR repertoire is limited. GVHD-like reactions are doubtful when the TCR repertoire is limited. (A,B). C57BL/6–pmel-1 (H-2b/b) cells were stimulated with the relevant peptide and cultured for 1 week in IL-2 and subsequently challenged in overnight cocultures against irradiated splenocytes derived from different inbred mouse strains (SJL, H-2s/s and DBA, H-2d/d) and F1 mice (B6-A F1, H-2b/a; B6-C3H F1, H-2b/k; and B6-BALB/c F1, H-2b/d) displaying different allogeneic MHC haplotypes in the presence or the absence of the relevant peptide gp10025-33 (+ pep). Syngeneic C57BL/6 H-2b/b irradiated splenocytes in the presence or the absence of the relevant gp10025-33 peptide were used as positive and negative controls, respectively. Panels A and B are representative of 2 independent experiments. (C) pmel-1 cells were generated on a B6-C3H F1 background (H-2b/k) and used in combination with vaccinia virus encoding hgp100 and exogenous rhIL-2 to treat B16 tumors established for 10 days in either B6-C3H F1 (SynPVI) or in B6-DBA F1 mice (H-2d/b) (AlloPVI). All groups were irradiated with 9 Gy TBI and given autologous BMT. Some groups also received different doses (104 or 105) of open repertoire B6-C3H F1 CD8+ naive T cells in conjunction with pmel-1 cells, vaccine, and rhIL-2 (AlloPVI + 105 CD8 and AlloPVI + 104 CD8). Results of tumor area are the mean of measurements of at least 5 mice per group (± SEM). Data are representative of 2 independent experiments. (D) Percentage of initial weight of mouse groups is shown. Andrea Boni et al. Blood 2008;112:4746-4754 ©2008 by American Society of Hematology