Figure 5 Lipid droplet consumption

Slides:



Advertisements
Similar presentations
Figure 1 Proposed risk stratification for patients with NAFLD
Advertisements

Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 The gut microbiota directly influences T-cell differentiation
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Nephrol. doi: /nrneph
Figure 3 Life cycle of hepatitis E virus
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Figure 5 Exosomes for delivery of RNA interference therapeutics
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 2 Effect of PPIs on gastric physiology
Defective autophagy leads to cancer
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Suggested biopsy-avoiding diagnostic pathway for coeliac disease Figure 1 | Suggested biopsy-avoiding diagnostic pathway for coeliac disease.
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 1 Definition and concept of ACLF
Figure 1 Functions, features and phenotypes of HSCs in normal and diseased livers Figure 1 | Functions, features and phenotypes of HSCs in normal and diseased.
Figure 1 Host range of hepatitis E virus
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Pseudorelaxation as a consequence of
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Volume 15, Issue 8, Pages R282-R283 (April 2005)
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 2 13C-octanoic acid gastric emptying breath test
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 5 Chrononutrition in the liver
Figure 3 Lipid droplet formation and expansion
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 High-resolution manometry studies performed
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Figure 3 Selective autophagy related to liver metabolism
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 2 Autophagosome formation in mammalian cells
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Autophagy Captures the Nobel Prize
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Presentation transcript:

Figure 5 Lipid droplet consumption Figure 5 | Lipid droplet consumption. a | Lipid droplets (LDs) can be degraded by lipolysis. As the surface of the LD shrinks, there is protein crowding and some proteins, especially class II proteins, fall off. b | Other proteins are removed from the LD surface and brought to the lysosome by chaperone-mediated autophagy. Small LDs or parts of an LD can be engulfed by a membrane bilayer to form autophagosomes that can be delivered to the lysosome for degradation. Gluchowski, N. L. et al. (2017) Lipid droplets and liver disease: from basic biology to clinical implications Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.32