SS 2017 Software Verification CTL model checking, BDDs

Slides:



Advertisements
Similar presentations
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Advertisements

Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Representing Boolean Functions for Symbolic Model Checking Supratik Chakraborty IIT Bombay.
CS 267: Automated Verification Lecture 2: Linear vs. Branching time. Temporal Logics: CTL, CTL*. CTL model checking algorithm. Counter-example generation.
M ODEL CHECKING -Vasvi Kakkad University of Sydney.
Algorithmic Software Verification VII. Computation tree logic and bisimulations.
BDDs & Theorem Proving Binary Decision Diagrams Dr. Eng. Amr T. Abdel-Hamid NETW 703 Winter 2012 Network Protocols Lectures are based on slides by: K.
Planning based on Model Checking Dept. of Information Systems and Applied CS Bamberg University Seminar Paper Svetlana Balinova.
An Introduction to the Model Verifier verds Wenhui Zhang September 15 th, 2010.
François Fages MPRI Bio-info 2006 Formal Biology of the Cell Modeling, Computing and Reasoning with Constraints François Fages, Constraints Group, INRIA.
IT University of Copenhagen Lecture 7: BDD Construction and Manipulation 1. BDD construction 2. Boolean operations on BDDs 3. BDD-Based configuration.
Qualitätssicherung von Software (SWQS) Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FOKUS : Modellprüfung II - BDDs.
SYMBOLIC MODEL CHECKING: STATES AND BEYOND J.R. Burch E.M. Clarke K.L. McMillan D. L. Dill L. J. Hwang Presented by Rehana Begam.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
SAT and Model Checking. Bounded Model Checking (BMC) A.I. Planning problems: can we reach a desired state in k steps? Verification of safety properties:
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der.
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
© 2011 Carnegie Mellon University Binary Decision Diagrams Part Bug Catching: Automated Program Verification and Testing Sagar Chaki September.
© 2011 Carnegie Mellon University Binary Decision Diagrams Part Bug Catching: Automated Program Verification and Testing Sagar Chaki September.
DATE-2002TED1 Taylor Expansion Diagrams: A Compact Canonical Representation for Symbolic Verification M. Ciesielski, P. Kalla, Z. Zeng B. Rouzeyre Electrical.
ECE Synthesis & Verification - Lecture 18 1 ECE 697B (667) Spring 2006 ECE 697B (667) Spring 2006 Synthesis and Verification of Digital Systems Word-level.
1 CSEP590 – Model Checking and Automated Verification Lecture outline for July 16, 2003.
 2001 CiesielskiBDD Tutorial1 Decision Diagrams Maciej Ciesielski Electrical & Computer Engineering University of Massachusetts, Amherst, USA
IT University of Copenhagen Lecture 8: Binary Decision Diagrams 1. Classical Boolean expression representations 2. If-then-else Normal Form (INF) 3. Binary.
By Tariq Bashir Ahmad Taylor Expansion Diagrams (TED) Adapted from the paper M. Ciesielski, P. Kalla, Z. Zeng, B. Rouzeyre,”Taylor Expansion Diagrams:
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
Binary Decision Diagrams (BDDs)
Model Checking Lecture 4 Tom Henzinger. Model-Checking Problem I |= S System modelSystem property.
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
CS 267: Automated Verification Lecture 6: Binary Decision Diagrams Instructor: Tevfik Bultan.
Algorithmic Software Verification V &VI. Binary decision diagrams.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
Four Lectures on Model Checking Tom Henzinger University of California, Berkeley.
Daniel Kroening and Ofer Strichman 1 Decision Procedures An Algorithmic Point of View BDDs.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Validation - Formal verification -
1 CSEP590 – Model Checking and Automated Verification Lecture outline for July 9, 2003.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut.
CIS 540 Principles of Embedded Computation Spring Instructor: Rajeev Alur
Software Verification 2 Automated Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität and Fraunhofer Institut für.
Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer.
How CTL model checking works
Basic concepts of Model Checking
SS 2017 Software Verification Timed Automata
Introduction to Software Verification
SS 2017 Software Verification Bounded Model Checking, Outlook
SS 2017 Software Verification SMT Solving, Partial Order Methods
CTL model checking algorithms
SS 2017 Software Verification Probabilistic modelling – DTMC / MDP
Prof. Dr. Holger Schlingloff 1,2 Dr. Esteban Pavese 1
Prof. Dr. Holger Schlingloff 1,2 Dr. Esteban Pavese 1
Planning as model checking, (OBDDs)
Software Verification 2 Automated Verification
SS 2017 Software Verification LTL monitoring
SS 2017 Software Verification Software Model Checking 2 - Parallelism
Automatic Verification
Functions Defined on General Sets
ECE 667 Synthesis and Verification of Digital Systems
SS 2018 Software Verification LTL Satisfiability applied
SS 2018 Software Verification ML, state machines
SS 2017 Software Verification Tableaus, CTL model checking
Software Verification 2 Automated Verification
SS 2018 Software Verification SAT & FOL
Software Verification 2 Automated Verification
SS 2017 Software Verification Modal Logics
Binary Decision Diagrams
Automatic Verification of Industrial Designs
Software Verification 2 Automated Verification
Formal Methods in software development
CSCI1600: Embedded and Real Time Software
Formal Methods in software development
Presentation transcript:

SS 2017 Software Verification CTL model checking, BDDs Prof. Dr. Holger Schlingloff 1,2 Dr. Esteban Pavese 1 (1) Institut für Informatik der Humboldt Universität (2) Fraunhofer Institut für offene Kommunikationssysteme FOKUS

Recap What is a tableau? How is it interpreted? Propositional closing rules? LTL tableaus? Closing rules? Model generation from an LTL tableau? Connection to LTL model checking?

CTL model checking For each LTS/model there is exactly one computation tree CTL model checking works directly on the model (no need to extract computation sequences) For all subformulas of a formula and all states of a given model, mark whether the state satisfies the subformula iteration on formulas according to their inductive definition if p is an atomic proposition, then pM= I(p) M={} (φψ)M = (M-φM +ψ M) (EXφ)M = {w | w‘ (wRw‘ w‘φM )} E(φU+ψ)M = {w | there is a path α from w and a w‘ on α such that (w<w‘ w‘ ψM ) w‘‘ (w<w‘‘<w‘ w‘‘ φM )} A(φU+ψ)M = {w | for all paths α from w there is a w‘ on α such that (w<w‘ w‘ ψM ) w‘‘ (w<w‘‘<w‘ w‘‘ φM )} (AXφ)M = {w | w‘ (wRw‘ w‘ (wRw‘ w‘φM ))}

Actual Calculation How to calculate (EX ψ)M from ψM? Inverse image construction How to calculate (AX ψ)M from ψM? How to calculate E(φU+ψ)M or A(φU+ψ)M from φM and ψM?

Inverse reachability calculation

Symbolic Representation Modelchecking algorithm deals with sets of states and with relations (sets of pairs of states) Need an efficient representation

Binary Encoding of Domains Any variable on a finite domain D can be replaced by log(D) binary variables similar to encoding of data types by compilers e.g. var v: {0..15} can be replaced by var v1,v2,v3,v4: boolean (0=0000, 1= 0001, 2=0010, 3=0011, ..., 15=1111) State space still in the order of original domain! e.g. three int8-variables can have 224=108 states e.g. array of length 10 with 10-bit values  1030 states Representation of large sets of states?

Representation of Sets

Ordered Tree Form Normal form for propositional formulas Uses only the connective Ite Linear ordering on the set of propositions e.g., most significant bit first Shannon expansion

Truth table and tree form formula Reduction: Replace Ite (v,ψ,ψ) by ψ

Abbreviations Introduce abbreviations maximally abbreviated

Binary Decision Trees (BDTs) Elimination of isomorphic subtrees (abbreviations)

Binary Decision Diagrams (BDDs) Elimination of redundant nodes (redundant subformulas) Ite (v,ψ,ψ) by ψ

Calculation of BDDs

Operations on BDDs Negation: easy (exchange T and F) Falsum: trivial and, or: Shannon expansion (φ OP ψ) = x  (φ{x:=T} OP ψ{x:=T})  ¬ x  (φ{x:=} OP ψ{x:=}) (φψ) = (x  (φ{x:=T}  ψ{x:=T}))  (¬ x  (φ{x:=}  ψ{x:=})) BDD realization? 12.4.2012

BDD-implies 12.4.2012

The Influence of Variable Ordering Heuristics: keep dependent variables close together! 5.7.2012