Adam J. Sherman, Alvin Shrier, Ellis Cooper  Biophysical Journal 

Slides:



Advertisements
Similar presentations
NOISE PERFORMANCE PATCH VOLTAGE CLAMP BILAYER VOLTAGE CLAMP.
Advertisements

Walther Akemann, Alicia Lundby, Hiroki Mutoh, Thomas Knöpfel 
Volume 89, Issue 5, Pages (November 2005)
Mark Ospeck, Kuni H. Iwasa  Biophysical Journal 
Oluwarotimi Okunade, Joseph Santos-Sacchi  Biophysical Journal 
Volume 115, Issue 3, Pages (September 1998)
Sodium Entry during Action Potentials of Mammalian Neurons: Incomplete Inactivation and Reduced Metabolic Efficiency in Fast-Spiking Neurons  Brett C.
Rundown of the Hyperpolarization-Activated KAT1 Channel Involves Slowing of the Opening Transitions Regulated by Phosphorylation  Xiang D. Tang, Toshinori.
Sanda Despa, Donald M. Bers  Biophysical Journal 
Volume 59, Issue 3, Pages (August 2008)
Volume 84, Issue 6, Pages (June 2003)
Endocannabinoids Control the Induction of Cerebellar LTD
Volume 87, Issue 1, Pages (July 2004)
M.J. Mason, A.K. Simpson, M.P. Mahaut-Smith, H.P.C. Robinson 
Differential Modulation of Cardiac Ca2+ Channel Gating by β-Subunits
FPL Modification of CaV1
Rodolfo Madrid, Magdalena Sanhueza, Osvaldo Alvarez, Juan Bacigalupo 
The Transfer Functions of Cardiac Tissue during Stochastic Pacing
A Theoretical Model of Slow Wave Regulation Using Voltage-Dependent Synthesis of Inositol 1,4,5-Trisphosphate  Mohammad S. Imtiaz, David W. Smith, Dirk.
Victor G. Romanenko, George H. Rothblat, Irena Levitan 
Zhuren Wang, J. Christian Hesketh, David Fedida  Biophysical Journal 
Volume 80, Issue 5, Pages (May 2001)
Unitary Conductance Variation in Kir2
Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells
Kristian Wadel, Erwin Neher, Takeshi Sakaba  Neuron 
Volume 107, Issue 6, Pages (September 2014)
Volume 14, Issue 11, Pages (November 2017)
Veena Venkatachalam, Adam E. Cohen  Biophysical Journal 
Determining the Activation Time Course of Synaptic AMPA Receptors from Openings of Colocalized NMDA Receptors  Ingo C. Kleppe, Hugh P.C. Robinson  Biophysical.
Modulation of the Gating of Unitary Cardiac L-Type Ca2+ Channels by Conditioning Voltage and Divalent Ions  Ira R. Josephson, Antonio Guia, Edward G.
Knut Debus, Manfred Lindau  Biophysical Journal 
Artur Llobet, Vahri Beaumont, Leon Lagnado  Neuron 
Volume 95, Issue 4, Pages (August 2008)
Khaled Machaca, H. Criss Hartzell  Biophysical Journal 
Structural Locus of the pH Gate in the Kir1.1 Inward Rectifier Channel
Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip
Carlos A. Obejero-Paz, Stephen W. Jones, Antonio Scarpa 
Katie C. Bittner, Dorothy A. Hanck  Biophysical Journal 
Walther Akemann, Alicia Lundby, Hiroki Mutoh, Thomas Knöpfel 
Rapid and Slow Voltage-Dependent Conformational Changes in Segment IVS6 of Voltage-Gated Na+ Channels  Vasanth Vedantham, Stephen C. Cannon  Biophysical.
X.-x. Dong, D. Ehrenstein, K.H. Iwasa  Biophysical Journal 
Volume 114, Issue 2, Pages (January 2018)
High Sensitivity of Stark-Shift Voltage-Sensing Dyes by One- or Two-Photon Excitation Near the Red Spectral Edge  Bernd Kuhn, Peter Fromherz, Winfried.
KCNKØ: Single, Cloned Potassium Leak Channels Are Multi-Ion Pores
Samuel J. Goodchild, Logan C. Macdonald, David Fedida 
Excitability of the Soma in Central Nervous System Neurons
Volume 101, Issue 4, Pages (August 2011)
C.A. Bertrand, D.M. Durand, G.M. Saidel, C. Laboisse, U. Hopfer 
Daniel Krofchick, Mel Silverman  Biophysical Journal 
Bernhard M. Schmitt, Hermann Koepsell  Biophysical Journal 
Imaging Inhibitory Synaptic Potentials Using Voltage Sensitive Dyes
Effects of Temperature on Heteromeric Kv11.1a/1b and Kv11.3 Channels
Inhibition of αβ Epithelial Sodium Channels by External Protons Indicates That the Second Hydrophobic Domain Contains Structural Elements for Closing.
Volume 105, Issue 12, Pages (December 2013)
Vladimir Avdonin, Toshinori Hoshi  Biophysical Journal 
Elementary Functional Properties of Single HCN2 Channels
A Point Mutation in Domain 4-Segment 6 of the Skeletal Muscle Sodium Channel Produces an Atypical Inactivation State  John P. O’Reilly, Sho-Ya Wang, Ging.
Don E. Burgess, Oscar Crawford, Brian P. Delisle, Jonathan Satin 
Electroporation of DC-3F Cells Is a Dual Process
Kinetics of P2X7 Receptor-Operated Single Channels Currents
J. Gao, W. Wang, I.S. Cohen, R.T. Mathias  Biophysical Journal 
Volume 86, Issue 4, Pages (April 2004)
Volume 110, Issue 1, Pages (January 2016)
Volume 78, Issue 3, Pages (March 2000)
Ian C. Forster, Jürg Biber, Heini Murer  Biophysical Journal 
R.P. Schuhmeier, B. Dietze, D. Ursu, F. Lehmann-Horn, W. Melzer 
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Two-Microelectrode Voltage Clamp of Xenopus Oocytes: Voltage Errors and Compensation for Local Current Flow  W. Baumgartner, L. Islas, F.J. Sigworth 
Peng Chen, Kevin D. Gillis  Biophysical Journal 
Impedance Analysis and Single-Channel Recordings on Nano-Black Lipid Membranes Based on Porous Alumina  Winfried Römer, Claudia Steinem  Biophysical Journal 
Presentation transcript:

Series Resistance Compensation for Whole-Cell Patch-Clamp Studies Using a Membrane State Estimator  Adam J. Sherman, Alvin Shrier, Ellis Cooper  Biophysical Journal  Volume 77, Issue 5, Pages 2590-2601 (November 1999) DOI: 10.1016/S0006-3495(99)77093-1 Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 1 Standard Rs compensation for a single electrode voltage clamp: Vp=Vc+αIpmeasRs, Vm=Vp−IpRs ∴Vm=Vc if Ipmeas=Ip and α → 1. Vc=command voltage, Vp=pipette voltage, Vm=membrane voltage, Ip=pipette current, Rs=pipette series resistance, Rm=cell resistance, Cm=cell capacitance. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 2 (A) Two-electrode voltage clamp. (B) Single-electrode voltage clamp using a membrane state estimator. Vc=command voltage, Vp=pipette voltage, Vm=membrane voltage, Ip=pipette current, Ipmeas=measured pipette current, Vpmeas=measured pipette voltage, Vmmeas=measured membrane voltage, Vmest=estimated membrane voltage. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 3 Lumped parameter RC model of patch pipette: Vp=pipette voltage, Vm=cell voltage, Ip=total pipette current, Ipc=pipette capacitive current, Ipr=pipette resistive current, Rs=pipette series resistance, Cp=pipette capacitance, Zcell=cell impedance. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 4 Stability of state estimator Rs compensation. (A) s-domain block diagram of single-electrode voltage clamp using state estimator Rs compensation. (B) Open-loop Bode plot of Vmest (s)/Vc (s), where s=j2πf, with the feedback path broken at X. (C) Closed-loop step response plot of Vm when Vc undergoes a stepwise transition from 0 to 100mV at t=0. Rs=5 MΩ, Cp=1pF, Rm=500 MΩ, Cm=50pF, τVpmeas, τIpmeas, τvmest=1.6μs, τcs=0.32μs, G0=3μA/V. Vc=command voltage, Verr=error voltage, Ip=pipette current, Vp=pipette voltage, Vmest=computed membrane voltage, τp=RsCp=pipette time constant, τm=RmCm=membrane time constant, τcs sets current source bandwidth, τIpmeas sets Ip measurement bandwidth, τVpmeas sets Vp measurement bandwidth, τvest sets membrane state estimator bandwidth. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 5 (A) Steady-state Rs compensation with (——) and without (·····) supercharging showing Vm (top) and Ip (bottom). Bridge balance set for Rm=500 MΩ, Cm=50pF. (B) State estimator Rs compensation showing Vm (top) and Ip (bottom). In both A and B, Vc steps form 0 to 100mV at t=0; Rm steps from 500 to 20 MΩ at t=3ms (marked by arrow). All other values are as in Fig. 4. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 6 (A) Model circuit used for dynamic conductance change. (B) Low-noise, bounceless SPST switch implementation. When the tube is filled with solution, the switch is closed; as the fluid level drops below wire A, the switch opens. (C, D) Measured current response of Axopatch 1D, using standard Rs compensation. (C) Custom-built amplifier using state estimator Rs compensation (D) to step conductance change while holding at −100mV. The switch Sw1 opening marked by arrow. Rs=4.7 MΩ, Cp ≈ 1.5pF, Cm=47pF, Rm1=180 MΩ, Rm2=10 MΩ. Traces in C: Low-pass filtered with a 4-pole Bessel filter at 10kHz. Traces in D: Low-pass filtered with a 1-pole RC filter at 15kHz. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 7 Voltage-clamped Na+ current from a P1 SCG neuron in culture for 6 days (Cm=25pF; Rs=6 MΩ). (A, B) Na+ current activation and peak I-V curve using 0% and 100% Rs compensation, respectively. (C) Stimulation protocol for displayed traces in A and C. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 8 Voltage-clamped Na+ current from a P1 SCG neuron in culture for 1 day (Cm=12pF; Rs=5 MΩ). (A, B) Na+ current activation and peak I-V curve using 80% and 100% Rs compensation, respectively. (C) Stimulation protocol for displayed traces in A and C. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 9 Measuring the effective Rs using state estimator Rs compensation. Peak I-V curves of Na+ current activation from a SCG neuron in response to depolarizing voltage steps with Vh=−90mV (curve 1, ——) and Vh=−70mV (curve 2, – – –). Rs=6 MΩ, effective Rs=220 kΩ. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure A1 Stability of standard Rs compensation. (A) s-domain block. (B) Open-loop Bode plot of |F1(jω)|. Rs=5 MΩ, Cm=50pF, α=1, τp, τz as indicated. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure A2 s-domain block diagram of steady-state Rs compensation. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure A3 Stability of state estimator Rs compensation. The state estimator equation is satisfied when α=1 and τz=τp. (A, B) s-domain block diagram showing voltage-clamp feedback loop with gain E. (C) Open-loop Bode plot of |F4(jω)| and ∠F4 (jω). Rs=5 MΩ, Cm=50pF, α=1, E, τp, and τz as indicated. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure A4 s-domain block diagram of voltage clamp, using a controlled current source (CCS) with state estimator Rs compensation. Biophysical Journal 1999 77, 2590-2601DOI: (10.1016/S0006-3495(99)77093-1) Copyright © 1999 The Biophysical Society Terms and Conditions