Key CLARITY technologies II – Four-Wave Mixing wavelength conversion National and Kapodistrian University of Athens Department of Informatics and Telecommunications.

Slides:



Advertisements
Similar presentations
Optical Parametric Generators and Oscillators Pump ( p ) partially depleted Signal ( s ) amplified Idler ( i ) generated p = s + i Parametric Amplifier.
Advertisements

Multi-wave Mixing In this lecture a selection of phenomena based on the mixing of two or more waves to produce a new wave with a different frequency, direction.
Simultaneously Stokes and anti-Stokes Raman amplification in silica fiber Victor G. Bespalov Russian Research Center "S. I. Vavilov State Optical Institute"
Light Waves and Polarization Xavier Fernando Ryerson Communications Lab
Multiwave stimulated Raman scattering with quasi-phase matching Victor G. Bespalov Russian Research Center "S. I. Vavilov State Optical Institute" Nikolai.
Fundamentals of Photonics
Optical sources Lecture 5.
S Digital Communication Systems Fiber-optic Communications - Supplementary.
Photonics Systems Group
May 16, 2006TERENA Networking Conference 2006, Catania, Italy1 Parametric Amplification and Multiple Wavelength Conversion in HNLF: Experimentation and.
Quasi-phase matching SRS generation. Nikolai S. Makarov, State Institute of Fine Mechanics and Optics, Victor G. Bespalov, Russian Research Center "S.
Combined Stokes-anti-Stokes Raman amplification in fiber Victor G. Bespalov All Russian Research Center "S. I. Vavilov State Optical Institute" Nikolai.
Lecture: 10 New Trends in Optical Networks
Lecture: 8 Physical Layer Impairments in Optical Networks Ajmal Muhammad, Robert Forchheimer Information Coding Group ISY Department.
The Sum Over States model, although exact, requires a detailed knowledge of many parameters which are not generally available. Experience has shown that.
Presented By: Gaurav C Josan Department - EE NON-LINEAR OPTICS NON LINEAR OPTICS.
Fundamentals of Photonics 1 NONLINEAR OPTICS- III.
Laser Anemometry P M V Subbarao Professor Mechanical Engineering Department Creation of A Picture of Complex Turbulent Flows…..
TeraHertz Kerr effect in GaP crystal
Title : Investigation on Nonlinear Optical Effects of Weak Light in Coherent Atomic Media  Author : Hui-jun Li  Supervisor: Prof Guoxiang Huang  Subject:
EE 230: Optical Fiber Communication Lecture 7 From the movie Warriors of the Net Optical Amplifiers-the Basics.
EE 230: Optical Fiber Communication Lecture 13
1 Optical Fibre Amplifiers. 2 Introduction to Optical Amplifiers Raman Fibre Amplifier Brillouin Fibre Amplifier Doped Fibre Amplifier.
EE 230: Optical Fiber Communication Lecture 6 From the movie Warriors of the Net Nonlinear Processes in Optical Fibers.
Introduction to Nonlinear Optics
Simulations of All-Optical Multiple-Input AND- Gate Based on Four Wave Mixing in a Single Semiconductor Optical Amplifier H. Le Minh, Z. Ghassemlooy, Wai.
Introduction to Nonlinear Optics H. R. Khalesifard Institute for Advanced Studies in Basic Sciences
May be regarded as a form of electromagnetic radiation, consisting of interdependent, mutually perpendicular transverse oscillations of an electric and.
Robert: Motivation Principles of Optics Applications Optimization Andy: Materials Loss vs. amplification Theoretical problems Overview = 4WM.
Fiber-Optic Communications
Fiber-Optic Communications
STUDY OF AMPLIFICATION ON ERBIUM DOPED FIBER AMPLIFIER Lita Rahmasari, Assoc. Prof. Dr. Yusof Munajat, Prof. Dr. Rosly Abdul Rahman Optoelectronics Laboratory,
Optical Amplifiers An Important Element of WDM Systems Xavier Fernando ADROIT Group Ryerson University.
All-Fiber Optical Parametric Oscillator (FOPO) Chengao Wang.
FWM IN SILICON NANOWIRE & MULTICORE FIBER COUPLING
Chapter 8. Second-Harmonic Generation and Parametric Oscillation
Dense Wavelength Division Multiplexing (DWDM) Technology
An Introduction. The first step on the road to laser was the publication of paper by Albert Einstein in 1916 –describing how atoms could interact with.
Design of Lightwave Communication Systems and Networks
EE 5551 Fiber Optic Communications Fall 2008, Sun Tue Thr 1:00-2:00 pm EE343 Instructor: Yazan A Alqudah Office Location EE446 Phone: Ext
Czesław Radzewicz Warsaw University Poland Konrad Banaszek Nicolaus Copernicus University Toruń, Poland Alex Lvovsky University of Calgary Alberta, Canada.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Controlling light with light.
Adiabatic approximation
Optical telecommunication networks.  Introduction  Multiplexing  Optical Multiplexing  Components of Optical Mux  Application  Advantages  Shortcomings/Future.
Definition: Nonlinear effect that occurs in nonlinear optical materials such as photonic switch, optical fiber cable, etc. This interaction between waves.
LECTURE-VI CONTENTS  NON LINEAR OPTICAL MATERIALS AND ITS APPLICATIONS.
Modulators and Semiconductors ERIC MITCHELL. Acousto-Optic Modulators Based on the diffraction of light though means of sound waves travelling though.
Measuring the Wave-Function of Broadband Bi-Photons
Optical Amplifiers By: Ryan Galloway.
Nonlinear Optics Lab. Hanyang Univ. Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index - Optical phase conjugation - Self-focusing.
Generation of Spurious Signals in Nonlinear Frequency Conversion Tyler Brewer, Russell Barbour, Zeb Barber.
An integrated survey in Optical Networks: Concepts, Components and Problems Delivered by Erna Sri Sugesti, Ir., MSc. 1 May 2013 Ali Norouzi †, A.Halim.
Design of Lightwave Communication Systems and Networks
Parametric Solitons in isotropic media D. A. Georgieva, L. M. Kovachev Fifth Conference AMITaNS June , 2013, Albena, Bulgaria.
UNIVERSITY OF WATERLOO Nortel Networks Institute University of Waterloo.
Phase velocity. Phase and group velocity Group velocity.
§8.4 SHG Inside the Laser Resonator
Four wave mixing in submicron waveguides
Nonlinear Optics Tobias J. Kippenberg
by: Mrs. Aboli N. Moharil Assistant Professor, EXTC dept.
Introduction to Nonlinear Optics
Design and Simulation of Photonic Devices and Circuits
8.2.2 Fiber Optic Communications
Light Waves and Polarization
Making Networks Light March 29, 2018 Charleston, South Carolina.
Principle of Mode Locking
Summary of Lecture 18 导波条件 图解法求波导模式 边界条件 波导中模式耦合的微扰理论
LECTURE-VI CONTENTS NON LINEAR OPTICAL MATERIALS AND ITS APPLICATIONS.
Fiber Laser Part 1.
9 Nonlinear Optics.
Presentation transcript:

Key CLARITY technologies II – Four-Wave Mixing wavelength conversion National and Kapodistrian University of Athens Department of Informatics and Telecommunications Photonics Technology Laboratory

Many optical systems may not be naturally compatible with one another and require a means of converting photons of different energies. Wavelength/frequency conversion is a technique used to alter the wavelength of an optical field. The new wavelength can be within the same waveband or in a totally different waveband. A variety of media can be used: - Passive (waveguides, optical fibers …) - Active (semiconductor lasers, amplifiers …) Introduction - Wavelength conversion Wavelengthconversiondevice λ λiλi λ λoλo

In an optical system non-linear response can occur when there is sufficiently intense illumination. The nonlinearity is exhibited in the polarization of the material (P) which is often represented by a power series expansion of the total applied optical field (E): Optical non-linearity usually occurs due to 2 nd and 3 rd susceptibility: χ (2), χ (3) Different non-linear processes which depend on the material can occur: - Cross gain saturation - Cross-phase modulation - Four-wave mixing Introduction - Non-linear processes 1

In most techniques more than one optical fields are required: - the field to be wavelength converted at λ 1 (signal) - an optical pumping field at λ 2 (pump) The signal photons are scattered to a new energy due to a non-linear process present in the medium. Four-Wave Mixing is a χ (3) process and can take place in many media Different non-linear physical mechanisms can contribute to the FWM process: - gain - Kerr effect - two-photon absorption - … Introduction - Non-linear processes 2 INPUTOUTPUT λ λ1λ1 λ2λ2 λ λ3λ3 λ1λ1 λ2λ2 Non-linear process Four-Wave Mixing (FWM) Cross-Phase Modulation (XPM) Cross-Gain Modulation (XGM)

In FWM process four optical fields are involved: - at the input: the signal and the pump - at the output: the conjugate or idler and the satellite Consider two input frequencies present, a strong pump field at ω p, and a signal field at ω s (Ω = ω p – ω s ). New components are generated at the output due to the non-linear polarization proportional to the third order susceptibility: - the idler at ω i, ω i = 2ω p - ω s = ω p + Ω - the satellite at ω s, ω s = 2ω s - ω p = ω s - Ω The idler is the phase conjugate of the signal and the satellite is the conjugate of the pump Four-Wave Mixing 1 INPUTOUTPUT ω ωsωs ωpωp ω ωiωi ωsωs ωpωp Four-Wave Mixing ωsωs Ω

The efficiency of the FWM process (strength of the new products) depends on the pump power. In order to obtain high efficiency, the FWM process the phase matching condition is required (β is the propagation constant): Conversion of a waveband is possible FWM is an efficient wavelength conversion tool for wavelength-division multiplexed (WDM) telecommunication networks But it plays a negative role in the propagation of multi-wavelength signals in optical fibers, as new undesired wavelengths are generated. Four-Wave Mixing 2

Conversion from mid-IR to near-IR using FWM - The concept Within CLARITY the FWM process will be used to convert optical signals from the mid- infrared (MIR) regime for detection to the near-IR (NIR) regime. 3 rd order non-linear materials will be used to realize broadband parametric amplification. For conversion of the signal which lies within the MIR regime (3 – 5 μm) to the NIR regime (1.4 – 1.7 μm), the pump should be around 2 μm.

Conversion from mid-IR to near-IR using FWM - Engineering issues Phase matching condition depends on: Input wavelengths Waveguide dispersion and non-linear properties Input pump power High conversion efficiency and broadband operation can be achieved following specific design rules: Engineering the waveguide geometry: - Small effective mode area at the pump wavelength regime is required in order to exploit the high power of the pump field (<1 μm 2 ) - Mode overlap close to 1 in order to maximize the non-linear interaction between the FWM fields Engineering the waveguide dispersion: zero dispersion at the pump wavenegth regime Proper selection of input wavelengths: pump tunability is required High pump power: ~W range