Day 10: September 26, 2012 MOS Transistor Basics

Slides:



Advertisements
Similar presentations
EE466: VLSI Design Lecture 02 Non Ideal Effects in MOSFETs.
Advertisements

Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Lecture 2: CMOS Transistor Theory
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
MOS Capacitors ECE Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the type that.
Metal-Oxide-Semiconductor Field Effect Transistors
Lecture 3: CMOS Transistor Theory
Qualitative Discussion of MOS Transistors. Big Picture ES220 (Electric Circuits) – R, L, C, transformer, op-amp ES230 (Electronics I) – Diodes – BJT –
ECE 342 Electronic Circuits 2. MOS Transistors
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 24, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 28, 2011 MOS Transistor.
1 Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, © Addison-Wesley, 3/e, 2004 MOS Transistor Theory.
Qualitative Discussion of MOS Transistors. Big Picture ES230 – Diodes – BJT – Op-Amps ES330 – Applications of Op-Amps – CMOS Analog applications Digital.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Short Channel Effects in MOSFET
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 19, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 25, 2013 MOS Transistors.
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
MOS Capacitors UoG-UESTC Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: September 22, 2014 MOS Transistor.
Introduction to CMOS VLSI Design CMOS Transistor Theory
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 20, 2013 MOS Transistor.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
The Devices: MOS Transistor
UNIT II : BASIC ELECTRICAL PROPERTIES
Chapter 6 The Field Effect Transistor
Day 9: September 27, 2010 MOS Transistor Basics
MOS Field-Effect Transistors (MOSFETs)
Recall Last Lecture Common collector Voltage gain and Current gain
Digital Electronics Class Lecture October 22, 2008
DMT 241 – Introduction to IC Layout
Revision CHAPTER 6.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
3: CMOS Transistor Theory
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
VLSI System Design Lect. 2.1 CMOS Transistor Theory
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Day 9: September 18, 2013 MOS Model
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Reading: Finish Chapter 17,
Qualitative Discussion of MOS Transistors
VLSI Design CMOS Transistor Theory
MOSFETs - An Introduction
Last Lecture – MOS Transistor Review (Chap. #3)
Day 2: September 10, 2010 Transistor Introduction
EMT 182 Analog Electronics I
Device EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Day 18: October 20, 2010 Ratioed Logic Pass Transistor Logic
Lecture 3: CMOS Transistor Theory
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
CP-406 VLSI System Design CMOS Transistor Theory
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Lecture #15 OUTLINE Diode analysis and applications continued
Lecture 3: CMOS Transistor Theory
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 3: CMOS Transistor Theory
Presentation transcript:

Day 10: September 26, 2012 MOS Transistor Basics ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 26, 2012 MOS Transistor Basics Penn ESE370 Fall2012 -- DeHon

Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation Velocity Saturation Subthreshold Penn ESE370 Fall2012 -- DeHon

Last Time Penn ESE370 Fall2012 -- DeHon

Refinement Depletion region  excess carriers depleted Penn ESE370 Fall2012 -- DeHon

Body Contact Fourth terminal Also effects fields Usually common across transistors Penn ESE370 Fall2012 -- DeHon

No Field VGS=0, VDS=0 Penn ESE370 Fall2012 -- DeHon

Apply VGS>0 Accumulate negative charge Repel holes (fill holes) + + + + + + + + - - - - - - - - - Penn ESE370 Fall2012 -- DeHon

Channel Evolution Increasing Vgs Penn ESE370 Fall2012 -- DeHon

Gate Capacitance Changes based on operating region. Happy if you treat as parallel plate Capacitor for HW4. Penn ESE370 Fall2012 -- DeHon

Inversion Surface builds electrons Inverts to n-type Draws electrons from n+ source Penn ESE370 Fall2012 -- DeHon

Threshold Voltage where strong inversion occurs  threshold voltage Around 2ϕF Engineer by controlling doping (NA) Penn ESE370 Fall2012 -- DeHon

Resistive Region VGS>VT, VDS small Penn ESE370 Fall2012 -- DeHon

Resistive Region VGS>VT, VDS small VGS fixed  looks like resistor Current linear in VDS Penn ESE370 Fall2012 -- DeHon

Linear (Resistive) Region Penn ESE370 Fall2012 -- DeHon

Linear (Resistive) Region Blue curve marks transition from Linear to Saturation Penn ESE370 Fall2012 -- DeHon

Dimensions Channel Length (L) Channel Width (W) Oxide Thickness (Tox) Penn ESE370 Fall2012 -- DeHon

Preclass Ids for identical transistors in parallel? Penn ESE370 Fall2012 -- DeHon

Preclass Ids for identical transistors in series? (Vds small) Penn ESE370 Fall2012 -- DeHon

Transistor Strength (W/L) D Transistor Strength (W/L) Penn ESE370 Fall2012 -- DeHon

Transistor Strength (W/L) D Transistor Strength (W/L) Shape dependence match Resistance intuition Wider = parallel resistors  decrease R Longer = series resistors  increase R Penn ESE370 Fall2012 -- DeHon

Ldrawn vs. Leffective Doping not perfectly straight Spreads under gate Effective L smaller than draw gate width Penn ESE370 Fall2012 -- DeHon

Channel Voltage Voltage varies along channel Think of channel as resistor Penn ESE370 Fall2012 -- DeHon

Preclass 2 What is voltage in the middle of a resistive medium? (halfway between terminals) Penn ESE370 Fall2012 -- DeHon

Voltage in Channel Think of channel as resistive medium Length = L Area = Width * Depth(inversion) What is voltage in the middle of the channel? L/2 from S and D ? Penn ESE370 Fall2012 -- DeHon

Channel Voltage Voltage varies along channel If think of channel as resistor Serves as a voltage divider between VS and VD Penn ESE370 Fall2012 -- DeHon

Impact on Inversion What happens when What is Vmiddle-Vs? Vgs=2Vth ? Vds=2Vth? What is Vmiddle-Vs? Penn ESE370 Fall2012 -- DeHon

Channel Field When voltage gap VG-Vxdrops below VTH, drops out of inversion Occurs when: VGS-VDS< VTH What does this mean about conduction? Penn ESE370 Fall2012 -- DeHon

Preclass 3 What is Vm? Penn ESE370 Fall2012 -- DeHon

Channel Field When voltage gap VG-Vxdrops below VT, drops out of inversion Occurs when: VGS-VDS< VT What is voltage at Vmiddle if conduction stops? What does that mean about conduction? Penn ESE370 Fall2012 -- DeHon

Contradiction? Vg-Vx < Vt  cutoff (no current) No current  Vg-Vx=Vgs Vg-Vx=Vgs > Vt  current flows Penn ESE370 Fall2012 -- DeHon

Way out? Vg-Vx < Vt  cutoff (no current) No current  Vg-Vx=Vgs Vg-Vx=Vgs > Vt  current flows Act like Vds at Vgs-Vt Penn ESE370 Fall2012 -- DeHon

Channel Field When voltage gap VG-Vxdrops below VT, drops out of inversion Occurs when: VGS-VDS< VT Channel is “pinched off” Penn ESE370 Fall2012 -- DeHon

Channel Field When voltage gap VG-Vxdrops below VT, drops out of inversion Occurs when: VGS-VDS< VT Channel is “pinched off” Current will flow, but cannot increase any further Penn ESE370 Fall2012 -- DeHon

Pinch Off When voltage drops below VT, drops out of inversion Occurs when: VGS-VDS< VT Conclusion: current cannot increase with VDS once VDS> VGS-VT Penn ESE370 Fall2012 -- DeHon

Saturation In saturation, VDS-effecitve=Vx= VGS-VT Becomes: Penn ESE370 Fall2012 -- DeHon

Saturation VDS> VGS-VT Penn ESE370 Fall2012 -- DeHon

Saturation Region Blue curve marks transition from Linear to Saturation Penn ESE370 Fall2012 -- DeHon

Preclass 3 What is electrical field in channel? Velocity: v=F*μ Leff=25nm, VDS=1V Field = VDS/L Velocity: v=F*μ Electron mobility: μn = 500 cm2/V What is electron velocity? Penn ESE370 Fall2012 -- DeHon

Short Channel Model assumes carrier velocity increases with field Increases with voltage There is a limit to how fast carriers can move Limited by scattering to 105m/s How relate to preclass 3 velocity? Encounter when channel short Modern processes, L is short enough Penn ESE370 Fall2012 -- DeHon

Velocity Saturation Once velocity saturates: Penn ESE370 Fall2012 -- DeHon

Velocity Saturation Penn ESE370 Fall2012 -- DeHon

Below Threshold Transition from insulating to conducting is non-linear, but not abrupt Current does flow But exponentially dependent on VGS Penn ESE370 Fall2012 -- DeHon

Subthreshold Penn ESE370 Fall2012 -- DeHon

Subthreshold S D W/L dependence follow from resistor behavior (parallel, series) Not shown explicitly in text λ is a channel width modulation effect Penn ESE370 Fall2012 -- DeHon

Subthreshold Slope Exponent in VGS determines how steep the turnoff is Every S Volts Divide IDS by 10 Penn ESE370 Fall2012 -- DeHon

Subthreshold Slope Exponent in VGS determines how steep the turnoff is Every S Volts (S not related to source) Divide IDS by 10 n – depends on electrostatics n=1  S=60mV at Room Temp. (ideal) n=1.5  S=90mV Single gate structure showing S=90-110mV Penn ESE370 Fall2012 -- DeHon

IDS vs. VGS Penn ESE370 Fall2012 -- DeHon

Admin Text 3.3.2 – highly recommend read HW3 due Thursday HW4 out Second half on Friday HW3 due Thursday HW4 out Penn ESE370 Fall2012 -- DeHon

Big Idea 3 Regions of operation for MOSFET Subthreshold Resistive Saturation Pinch Off Velocity Saturation Short channel Penn ESE370 Fall2012 -- DeHon