4. Hidden Local Symmetry Effective (Field) Theory

Slides:



Advertisements
Similar presentations
1 Holographic description of Hadrons from String Theory Shigeki Sugimoto (IPMU) Rencontres de Moriond, March 25, La Thuile, Italy (based on works.
Advertisements

Baryons with Holography Hideo SUGANUMA ( Kyoto Univ. ) Toru KOJO ( Kyoto Univ. ) Kanabu NAWA ( RCNP ) in collaboration with.
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
Chiral freedom and the scale of weak interactions.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
Happy 120 th birthday. Mimeograph Constraining Goldstinos with Constrained Superfields Nathan Seiberg IAS Confronting Challenges in Theoretical Physics.
Dipion Spectrum : e + e - annihilations and τ decays M. Benayoun LPNHE Paris 6/7 1M. Benayoun, e+ e- versus tau.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Chiral freedom and the scale of weak interactions.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Chiral freedom and the scale of weak interactions.
The chiral partner of the nucleon in the mirror assignment University Frankfurt Susanna Wilms in collaboration with: Francesco Giacosa and.
Update on High Precision Measurement of the Neutral Pion Decay Width Rory Miskimen University of Massachusetts, Amherst Outline  0 →  and the chiral.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
“Time-reversal-odd” distribution functions in chiral models with vector mesons Alessandro Drago University of Ferrara.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Recent progress on nuclear physics from Skyrme model Yong-Liang Ma Jilin University In Collaboration with: M. Harada, B. R. He H. K. Lee, Y. Oh, B. Y.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Denis Parganlija, A Linear Sigma Model with Vector Mesons and Global Chiral Invariance Denis Parganlija In collaboration with Francesco Giacosa,
Ignasi Rosell Universidad CEU Cardenal Herrera 2007 Determining chiral couplings at NLO: and JHEP 0408 (2004) 042 [hep-ph/ ] JHEP 0701 (2007)
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
Masayasu Harada (Nagoya Univ.) based on M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H., T.Fujimori and C.Sasaki, in KIAS-Hanyang Joint.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
Restoration of chiral symmetry and vector meson in the generalized hidden local symmetry Munehisa Ohtani (RIKEN) Osamu Morimatsu ( KEK ) Yoshimasa Hidaka(TITech)
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Topological Structure of Dense Hadronic Matter October, 2004 Seoul V. Vento Universitat de València Colaborators: Heejung Lee (Universitat de València),
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
EFT for π ☆ Chiral Perturbation Theory matching to QCD ⇒ Λ ~ 1 GeV P-wave ππ scattering J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984); NPB.
Denis Parganlija (Vienna UT) Mesons in non-perturbative and perturbative regions of QCD Mesons in non-perturbative and perturbative regions of QCD Denis.
Topology Change and EoS for Compressed Baryonic Matter WCU-APCTP 2013.
Meson and Baryon Resonances from the interaction of vector mesons Hidden gauge formalism for vector mesons, pseudoscalars and photons Derivation of chiral.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and K.Yamawaki, Phys. Rev. Lett. 87, (2001)
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
Study of sigma meson structure in chiral models Masayasu Harada (Nagoya Univ.) at Crossover 2012 (Nagoya University, July 12, 2012) Based on ・ M.H., H.Hoshino.
H. Kamano , M. Morishita , M. Arima ( Osaka City Univ. )
Chiral Extrapolations of light resonances
Nuclear Physics : Origin of elements
Axion Electrodynamics
Resonance saturation at next-to-leading order
-Nucleon Interaction and Nucleon Mass in Dense Baryonic Matter
Lagrange Formalism & Gauge Theories
Lattice College of William and Mary
Adjoint sector of MQM at finite N
mesons as probes to explore the chiral symmetry in nuclear matter
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1W1+  2W2 +  3W3.
Construction of a relativistic field theory
Extending the Linear Sigma Model to Nf = 3
Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model
Handout 9 : The Weak Interaction and V-A
dark matter Properties stable non-relativistic non-baryonic
Weak Interacting Holographic QCD
National Taiwan University
Adnan Bashir, UMSNH, Mexico
SUSY breaking by metastable state
The Operator Product Expansion Beyond Perturbation Theory in QCD
Chiral Structure of Hadronic Currents
Nuclear Forces - Lecture 5 -
Present status of bottom up model: sample works
Hyun Kyu Lee Hanyang University
Dilaton in Baryonic Matter
Pion transition form factor in the light front quark model
Current Status of Exact Supersymmetry on the Lattice
Gauge theory and gravity
The decays KS, L into four leptons
Presentation transcript:

4. Hidden Local Symmetry Effective (Field) Theory including vector mesons in addition to pseudoscalar mesons M.Bando, T.Kugo and K.Yamawaki, Phys. Rept. 164,217 (1988). M.Harada and K.Yamawaki, Phys. Rept. 381, 1 (2003).

4.1 Necessity for vector mesons ☆ Chiral Perturbation Theory EFT for π J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984); NPB 250, 517 (1985) P-wave ππ scattering 1-loop tree

Anti-symmetric tensor field Massive Yang-Mills Hidden local symmetry ☆ What EFT do we need to include r and p ? ◎ several ways to include r Matter field Anti-symmetric tensor field Massive Yang-Mills Hidden local symmetry These are all equivalent at tree level. A difference appears at loop level. ◎ Hidden Local Symmetry Theory ・・・ EFT for r and p M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, PRL 54 1215 (1985) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988) M.H. and K.Yamawaki, Physics Reports 381, 1 (2003 based on chiral symmetry of QCD ρ ・・・ gauge boson of the HLS

the Hidden Local Symmetry 4.2 Model based on the Hidden Local Symmetry

☆ Chiral Lagrangian L = tr[∇ U ∇ U ] ; U = e → g U g Non-Linear Realization of Chiral Symmetry SU(N ) ×SU(N ) → SU(N ) f L R V ◎ Basic Quantity U = e → g U g R 2iπ T /F a π L † ; g ∈ SU(N ) L,R f ◎ Lagrangian L = tr[∇ U ∇ U ] F π 2 4 μ † ∇ U ≡∂ U - i L U + i U R μ L , R ; gauge fields of SU(N ) μ f L,R

☆ Hidden Local Symmetry M.Bando, T.Kugo, S.Uehara, K.Yamawaki and T.Yanagida, PRL 54, 1215 (1985) M.Bando, T.Kugo and K.Yamawaki, Phys. Rept. 164, 297 (1988) U = e = ξ ξ 2iπ/ F π L † R h ∈ [SU(N ) ] f V local g ∈ [SU(N ) ] L,R global F , F ・・・ Decay constants of π and σ π σ ・ Particles ρ = ρ T ・・・ HLS gauge boson μ a π=π T ・・・ NG boson of [SU(N ) × SU(N ) ] symmetry breaking a f L R global σ=σ T ・・・ NG boson of [SU(N ) ] symmetry breaking a f V local

Maurer-Cartan 1-forms 変換性 : Lagrangian

4.3 Phenomenology at tree level

? ☆ KSRF I (on-shell ; p = m ) ? ☆ Low Energy Theorem Exact in the low energy limit ; p = 0 ρ 2 gauge boson --- well-defined off-shell ☆ KSRF I (on-shell ; p = m ) ? ρ 2 ?

☆ KSRF I (on-shell ; p = m ) ? ρ 2 ? 15% deviation !!

☆ Values of Parameters

4.4 Predictions (quantitative) F = 92.42 ± 0.26 MeV π g = 5.80 ± 0.91 ; a = 2.07 ± 0.33 ρ– γ mixing strength g = agF = 0.103 ± 0.023 GeV ρ 2 π g | = 0.119 ± 0.001 GeV ρ 2 exp cf :

a a ☆ Electromagnetic Form Factor of pion = 1 - 2 + m - p g g F (p ) = 1 - a 2 + m - p ρ g g ρππ F (p ) π 2 V m = ag F π ρ 2 g = agF ρ π 2 g = ag/2 ρππ = 1 - a 2 + m - p ρ m F (p ) π V F (0) = 1 π V

| ☆ charge radius of pion = 0.407 ± 0.064 (fm) 〈r 〉 = 〈r 〉 = = 1 - a 2 + m - p ρ m F (p ) π 2 V p 2 m 2 ρ 3a = 1 + + ・・・ 6 m 2 ρ 3a = 0.407 ± 0.064 (fm) 〈r 〉 V π = 〈r 〉 2 V π | exp = 0.452 ± 0.011 ; (PDG2006)

4.5 Vector meson saturation of the low energy constants - Relation to the chiral perturbation theory - (HLS at tree level)

Chiral Lagrangian with O(p ) terms ☆ Integrating out vector mesons in the low energy region at tree level EOM for V μ (V = gρ ) aF (V – α ) - (∂ V – i [ V , V ] ) = 0 μ π 2 //μ g 1 ν μν V = α + O(p ) μ //μ m 2 ρ 1 3 ; α = (D ξ ・ξ + D ξ ・ξ )/(2i) L R † D ξ = ∂ ξ - i R ξ μ R identity ; † U = ξ ・ξ L R 1 2i i 2 ^ α = ξ・∇ U・ξ = ξ ・∇U ・ξ ⊥μ μ Chiral Lagrangian with O(p ) terms 4

L ; O (p ) terms of chiral Larangian 1 2i i 2 ^ α = ξ・∇ U・ξ = ξ ・∇U ・ξ † ⊥μ L μ R ◎ = F tr [ α ] 2 π ⊥μ ^ ⊥ μ [ ∇ U 4 † ※ V = α + O(p ) μ //μ m 2 ρ 1 3 ; α // ^ α - V = ◎ ※ = a F tr [ α ] π 2 ^ // μ O (p ) 6 - tr [ V V ] 2 g 1 μν ※ L ; O (p ) terms of chiral Larangian 4 V

g = 5.80 ± 0.91 G.Ecker, J.Gasser, A.Pich and E.deRafael, NPB 321, 311 (1989)

4.6 Relation to other models of vector mesons

[ [ ] L ∇ U = F tr α ★ Matter field method ☆ CCWZ Lagrangian for π ◎ Bulding blocks α = (D ξ・ξ - D ξ・ξ )/(2i) ⊥μ μ † α = (D ξ・ξ + D ξ・ξ )/(2i) //μ μ † U = ξ・ξ= e 2iπ/F π ; D ξ = ∂ ξ +i ξL μ † ; D ξ = ∂ ξ+i ξR μ ◎ transformaion properties ξ= e → h(π, g , g ) ・ξ・ g = g ・ξ・ h (π, g , g ) iπ/F π L R † α → h ・α ・ h † ⊥μ α → h ・α ・ h + ∂ h ・ h / i † //μ μ † ; ◎ Lagrangian with least derivatives = F tr [ α ] 2 π ⊥μ ⊥ μ L [ ∇ U 4 †

☆ vector meson field ・・・ matter field ◎ transformation property ρ → h(π,g ,g ) ・ρ ・ h (π,g ,g ) † μ (C) R L ◎ Building blocks ρ ≡ D ρ -D ρ μν (C) μ ν D ρ ≡∂ ρ - i [α , ρ ] μ (C) ν //μ ; V ≡(ξR ξ + ξ L ξ )/2 † μν ^ A ≡(ξR ξ - ξ L ξ )/2 † μν ^ ; L , R ; gauge fields of SU(N ) μ f L,R ◎ Lagrangian with vector meson

☆ Correspondence between parts of MFM and those of HLS ▽ HLS in the unitary gauge ・・・ σ=0 ξ =ξ =ξ L R † ρ =ζ(α - V ) =ζα (C) μ //μ ^ ; All the building blocks of the MFM are expressed by those of the HLS. For any Lagrangian of the MFM, whatever the form it takes, we can construct the equivalent Lagrangian of the HLS.

☆ Example higher order terms ◎ parameter relations

・・・ true only at on-shell !! ◎ parameter relations ◎ Relations of physical quantities ☆ MFM = HLS ・・・ true only at on-shell !! ◎ Differences appear at off-shell

◎ In-equivalence for off-shell ρ

4.7 Anomalous Processes

☆ Generalization of Wess-Zumino action ・・・ inclusion of vector mesons based on the HLS ◎ Wess-Zumino anomaly equation ◎ general solution

☆ VVπ, Vγπ, γγπ vertices

☆ π0 → γγ* and vector dominance (VD) ◎ π0 γ* γ* vertices ◎ π0 γ transition form factor ・ vector meson propagators

◎ determination of (c3+c4)/2 from experiment