Sukant Mittal, Ian Y. Wong, William M. Deen, Mehmet Toner 

Slides:



Advertisements
Similar presentations
Volume 103, Issue 8, Pages (October 2012)
Advertisements

Multiparticle Adhesive Dynamics
Volume 108, Issue 5, Pages (March 2015)
The State Diagram for Cell Adhesion Mediated by Two Receptors
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
Benoit Tesson, Michael I. Latz  Biophysical Journal 
Volume 104, Issue 2, Pages (January 2013)
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Unsteady Motion, Finite Reynolds Numbers, and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag  Sangjin.
Volume 109, Issue 11, Pages (December 2015)
Volume 113, Issue 12, Pages (December 2017)
Volume 107, Issue 11, Pages (December 2014)
Volume 105, Issue 2, Pages (July 2013)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Phase Transitions in Biological Systems with Many Components
One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions  Itsushi Minoura, Eisaku Katayama,
Volume 104, Issue 5, Pages (March 2013)
Volume 110, Issue 11, Pages (June 2016)
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Model of Aquaporin-4 Supramolecular Assembly in Orthogonal Arrays Based on Heterotetrameric Association of M1-M23 Isoforms  Byung-Ju Jin, Andrea Rossi,
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 105, Issue 10, Pages (November 2013)
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Traction Forces of Neutrophils Migrating on Compliant Substrates
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
A 3-D Model of Ligand Transport in a Deforming Extracellular Space
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Volume 105, Issue 1, Pages (July 2013)
An Electrostatic Model for DNA Surface Hybridization
Intracellular Microrheology of Motile Amoeba proteus
Volume 104, Issue 8, Pages (April 2013)
Volume 114, Issue 5, Pages (March 2018)
Jan Ribbe, Berenike Maier  Biophysical Journal 
Volume 109, Issue 1, Pages (July 2015)
Volume 103, Issue 6, Pages (September 2012)
Volume 101, Issue 3, Pages (August 2011)
Volume 107, Issue 7, Pages (October 2014)
Martin Clausen, Michael Koomey, Berenike Maier  Biophysical Journal 
Flow-Enhanced Stability of Rolling Adhesion through E-Selectin
Drift and Behavior of E. coli Cells
Will J. Eldridge, Zachary A. Steelman, Brianna Loomis, Adam Wax 
Volume 107, Issue 11, Pages (December 2014)
Volume 96, Issue 5, Pages (March 2009)
Volume 90, Issue 6, Pages (March 2006)
Irina V. Dobrovolskaia, Gaurav Arya  Biophysical Journal 
Luthur Siu-Lun Cheung, Konstantinos Konstantopoulos 
Focal Adhesion Kinase Stabilizes the Cytoskeleton
N.A. N’Dri, W. Shyy, R. Tran-Son-Tay  Biophysical Journal 
Volume 110, Issue 1, Pages (January 2016)
Hung-Yu Chang, Xuejin Li, George Em Karniadakis  Biophysical Journal 
On the Quantification of Cellular Velocity Fields
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Venkat Maruthamuthu, Margaret L. Gardel  Biophysical Journal 
Volume 111, Issue 7, Pages (October 2016)
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 108, Issue 10, Pages (May 2015)
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 111, Issue 9, Pages (November 2016)
Volume 98, Issue 1, Pages (January 2010)
Volume 108, Issue 11, Pages (June 2015)
John E. Pickard, Klaus Ley  Biophysical Journal 
Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid  Hiromichi Nakahara, Sannamu Lee,
Volume 104, Issue 4, Pages (February 2013)
Experimental Verification of the Behavioral Foundation of Bacterial Transport Parameters Using Microfluidics  Tanvir Ahmed, Roman Stocker  Biophysical.
Volume 113, Issue 2, Pages (July 2017)
William J. Galush, Jeffrey A. Nye, Jay T. Groves  Biophysical Journal 
George D. Dickinson, Ian Parker  Biophysical Journal 
Presentation transcript:

Antibody-Functionalized Fluid-Permeable Surfaces for Rolling Cell Capture at High Flow Rates  Sukant Mittal, Ian Y. Wong, William M. Deen, Mehmet Toner  Biophysical Journal  Volume 102, Issue 4, Pages 721-730 (February 2012) DOI: 10.1016/j.bpj.2011.12.044 Copyright © 2012 Biophysical Society Terms and Conditions

Figure 1 (A) Enhanced cell transport to a fluid-permeable capture surface is achieved by diverting streamlines. (B) Gentle cell rolling and arrest on the capture surface occur due to reduced shear and increased cell-surface interactions. (C) Scanning electron micrograph of polycarbonate surface with 200 nm pores and 10% porosity; schematic of microfluidic device assembly and dimensions. (D) Fluid flow rates through the top and bottom outlets vary linearly with increasing pressure; their ratio is constant and precisely controlled with the use of high-resistance outlets. Each marker is the average of five experiments per condition. Biophysical Journal 2012 102, 721-730DOI: (10.1016/j.bpj.2011.12.044) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 2 Theoretical particle trajectories (dashed black lines) and fluid velocity field vectors (color) in channels with (A) solid surface (A = 0%) and (B) fluid-permeable surface (A = 70%). The color bar corresponds to the magnitude of fluid velocity vectors. Experimentally measured particle velocities tracked in channels with (C) solid surface (A = 0%) and (D) fluid-permeable surface (A = 70%). Biophysical Journal 2012 102, 721-730DOI: (10.1016/j.bpj.2011.12.044) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 3 Experimental measurements of cell surface velocity (markers) as a function of percentage permeation flux A and channel distance. Porous surface was not functionalized. Solid lines are best-fit linear regressions. Each marker and error bar is the average and standard deviation of 30 cells per condition. Biophysical Journal 2012 102, 721-730DOI: (10.1016/j.bpj.2011.12.044) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 4 Instantaneous velocity and displacement trajectories for PC3 cancer cells transported to (A and B) noncomplementary anti-IgG, exhibiting rolling motion at constant speed, and (C and D) anti-EpCAM fluid-permeable surfaces at x = 3 cm with A = 70%, exhibiting rolling before complete arrest. Biophysical Journal 2012 102, 721-730DOI: (10.1016/j.bpj.2011.12.044) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 5 (A) Capture efficiency of PC3 cancer cells at increasing flow rates on complementary anti-EpCAM porous surfaces (red squares), anti-EpCAM solid surfaces (red triangles), noncomplementary anti-IgG porous surfaces (green circles), and anti-IgG solid surfaces (green triangles). Each marker and error bar is the average and SD of three experiments. (B) Capture profile varies along the channel length on an anti-EpCAM porous capture surface at Qin= 6 mL/h and A = 70%. The transverse wall velocity vw0 = 141 μm/s. (C–F) Representative fluorescence micrograph of captured PC3 cells at x = 3 cm for (C) anti-EpCAM porous surface, (D) anti-IgG porous surface, (E) anti-EpCAM solid surface, and (F) anti-IgG solid surface. Scale bar is 100 μm. Biophysical Journal 2012 102, 721-730DOI: (10.1016/j.bpj.2011.12.044) Copyright © 2012 Biophysical Society Terms and Conditions

Figure 6 Phase diagram of the critical distance (xcr) where the volume fraction of cells reaches the maximum close packing (φw ∼ φmax ∼ 0.6) as a function of the initial volume fraction φo and channel location. (A) Low permeation flux (A = 10%). (B) High permeation flux (A = 70%). At a critical value of initial volume fraction, the maximum close packing is reached along the length of the channel, causing excess cell buildup (caking) and hindering cell capture (white dotted line). Devices were operated in the optimum regime (φo = 0.1, Qin = 6 mL/h, A = 70%) to maximize throughput without excess cell buildup (red line). Biophysical Journal 2012 102, 721-730DOI: (10.1016/j.bpj.2011.12.044) Copyright © 2012 Biophysical Society Terms and Conditions