… and the following mathematical appetizer is about…

Slides:



Advertisements
Similar presentations
1.6 Functions. Chapter 1, section 6 Functions notation: f: A B x in A, y in B, f(x) = y. concepts: –domain of f, –codomain of f, –range of f, –f maps.
Advertisements

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Manish Kumar PRE. 1 Theory Of Computation Pre-requisite.
Functions Section 2.3 of Rosen Fall 2008
Functions Goals Introduce the concept of function Introduce injective, surjective, & bijective functions.
1 Section 1.8 Functions. 2 Loose Definition Mapping of each element of one set onto some element of another set –each element of 1st set must map to something,
CS 2210 (22C:019) Discrete Structures Sets and Functions Spring 2015 Sukumar Ghosh.
February 5, 2015Applied Discrete Mathematics Week 1: Logic and Sets 1 Homework Solution PQ  (P  Q) (  P)  (  Q)  (P  Q)  (  P)  (  Q) truetruefalsefalsetrue.
Functions.
Functions. Let A and B be sets A function is a mapping from elements of A to elements of B and is a subset of AxB i.e. can be defined by a set of tuples!
Section 1.8: Functions A function is a mapping from one set to another that satisfies certain properties. We will first introduce the notion of a mapping.
2.1 Sets 2.2 Set Operations 2.3 Functions ‒Functions ‒ Injections, Surjections and Bijections ‒ Inverse Functions ‒Composition 2.4 Sequences and Summations.
FUNCTION Discrete Mathematics Asst. Prof. Dr. Choopan Rattanapoka.
February 12, 2015Applied Discrete Mathematics Week 2: Functions and Sequences 1Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3,
Discrete Maths Objectives to show the connection between relations and functions, and to introduce some functions with useful, special properties ,
Functions. Copyright © Peter Cappello2 Definition Let D and C be nonempty sets. A function f from D to C, for each element d  D, assigns exactly 1 element.
Discrete Mathematics and Its Applications Sixth Edition By Kenneth Rosen Copyright  The McGraw-Hill Companies, Inc. Permission required for reproduction.
Fall 2002CMSC Discrete Structures1 … and the following mathematical appetizer is about… Functions.
10/26/20151 … and the following mathematical appetizer is about… Functions.
Discrete Mathematics CS 2610 September 12, Agenda Last class Functions  Vertical line rule  Ordered pairs  Graphical representation  Predicates.
Functions Section 2.3 of Rosen Spring 2012 CSCE 235 Introduction to Discrete Structures Course web-page: cse.unl.edu/~cse235 Questions: Use Piazza.
Dr. Eng. Farag Elnagahy Office Phone: King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222.
1 Discrete Structures – CNS 2300 Text Discrete Mathematics and Its Applications (5 th Edition) Kenneth H. Rosen Chapter 1 The Foundations: Logic, Sets,
Chapter 1 SETS, FUNCTIONs, ELEMENTARY LOGIC & BOOLEAN ALGEBRAs BY: MISS FARAH ADIBAH ADNAN IMK.
321 Section, Week 3 Natalie Linnell. Functions A function from A to B is an assignment of exactly one element of B to each element of A. We write f(a)
Example Prove that: “IF 3n + 2 is odd, then n is odd” Proof by Contradiction: -p = 3n + 2 is odd, q = n is odd. -Assume that ~(p  q) is true OR -(p 
Basic Structures: Functions Muhammad Arief download dari
CSE 2353 – October 1 st 2003 Functions. For Real Numbers F: R->R –f(x) = 7x + 5 –f(x) = sin(x)
Fall 2003CMSC Discrete Structures1 … and now for something completely different… Set Theory Actually, you will see that logic and set theory are.
Basic Structures: Sets, Functions, Sequences, and Sums.
Functions Discrete Structure. L62 Functions. Basic-Terms. DEF: A function f : A  B is given by a domain set A, a codomain set B, and a rule which for.
CSC102 - Discrete Structures Functions
1 Functions CS 202 Epp section ??? Aaron Bloomfield.
FUNCTIONS COSC-1321 Discrete Structures 1. Function. Definition Let X and Y be sets. A function f from X to Y is a relation from X to Y with the property.
1 Discrete Mathematical Functions Examples.
1 Lecture 5 Functions. 2 Functions in real applications Curve of a bridge can be described by a function Converting Celsius to Fahrenheit.
Ch02-Basic Structures: Sets, Functions, Sequences, Sums, and Matrices 1.
Section 2.3. Section Summary  Definition of a Function. o Domain, Cdomain o Image, Preimage  One-to-one (Injection), onto (Surjection), Bijection 
Chapter 2 1. Chapter Summary Sets The Language of Sets - Sec 2.1 – Lecture 8 Set Operations and Set Identities - Sec 2.2 – Lecture 9 Functions and sequences.
FUNCTIONS.
Discrete Mathematics Functions
Functions 7/7/2016COCS - Discrete Structures1. Functions A function f from a set A to a set B is an assignment of exactly one element of B to each element.
Functions Goals Introduce the concept of function
Functions Section 2.3.
CS 2210:0001 Discrete Structures Sets and Functions
Applied Discrete Mathematics Week 2: Functions and Sequences
Functions.
Relation and function.
Chapter 3 Relation and Function Homework 4 For each of the following relations on set A = { 1,2,3,4 }, check each of them whether they are reflexive, irreflexive,
… and the following mathematical appetizer is about…
Functions.
Discrete Math for Computer Science CSC 281
Functions Section 2.3.
Discrete Math (2) Haiming Chen Associate Professor, PhD
Functions.
CSE15 Discrete Mathematics 02/27/17
CS100: Discrete structures
Discrete Mathematics and its Applications
Functions CS 202 Epp section 7.1.
Functions.
Ch 5 Functions Chapter 5: Functions
ICS 253: Discrete Structures I
… and the following mathematical appetizer is about…
Functions Rosen 6th ed., §2.3.
Applied Discrete Mathematics Week 3: Sets
Functions Rosen 2.3, 2.5 f( ) = A B Lecture 5: Oct 1, 2.
Properties of Functions
Discrete Mathematics and its Applications
Functions Section 2.3.
Discrete Mathematics and its Applications
Presentation transcript:

… and the following mathematical appetizer is about… Functions Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions A function f from a set A to a set B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write f: AB (note: Here, ““ has nothing to do with if… then) Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions If f:AB, we say that A is the domain of f and B is the codomain of f. If f(a) = b, we say that b is the image of a and a is the pre-image of b. The range of f:AB is the set of all images of elements of A. We say that f:AB maps A to B. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions Let us take a look at the function f:PC with P = {Linda, Max, Kathy, Peter} C = {Boston, New York, Hong Kong, Moscow} f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = New York Here, the range of f is C. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions Let us re-specify f as follows: f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston Is f still a function? yes What is its range? {Moscow, Boston, Hong Kong} Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions Other ways to represent f: Boston Peter Hong Kong Kathy Max Moscow Linda f(x) x Linda Max Kathy Peter Boston New York Hong Kong Moscow Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions If the domain of our function f is large, it is convenient to specify f with a formula, e.g.: f:RR f(x) = 2x This leads to: f(1) = 2 f(3) = 6 f(-3) = -6 … Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions Let f1 and f2 be functions from A to R. Then the sum and the product of f1 and f2 are also functions from A to R defined by: (f1 + f2)(x) = f1(x) + f2(x) (f1f2)(x) = f1(x) f2(x) Example: f1(x) = 3x, f2(x) = x + 5 (f1 + f2)(x) = f1(x) + f2(x) = 3x + x + 5 = 4x + 5 (f1f2)(x) = f1(x) f2(x) = 3x (x + 5) = 3x2 + 15x Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions We already know that the range of a function f:AB is the set of all images of elements aA. If we only regard a subset SA, the set of all images of elements sS is called the image of S. We denote the image of S by f(S): f(S) = {f(s) | sS} Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Functions Let us look at the following well-known function: f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston What is the image of S = {Linda, Max} ? f(S) = {Moscow, Boston} What is the image of S = {Max, Peter} ? f(S) = {Boston} Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions A function f:AB is said to be one-to-one (or injective), if and only if x, yA (f(x) = f(y)  x = y) In other words: f is one-to-one if and only if it does not map two distinct elements of A onto the same element of B. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions And again… f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston Is f one-to-one? No, Max and Peter are mapped onto the same element of the image. g(Linda) = Moscow g(Max) = Boston g(Kathy) = Hong Kong g(Peter) = New York Is g one-to-one? Yes, each element is assigned a unique element of the image. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions How can we prove that a function f is one-to-one? Whenever you want to prove something, first take a look at the relevant definition(s): x, yA (f(x) = f(y)  x = y) Example: f:RR f(x) = x2 Disproof by counterexample: f(3) = f(-3), but 3  -3, so f is not one-to-one. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions … and yet another example: f:RR f(x) = 3x One-to-one: x, yA (f(x) = f(y)  x = y) To show: f(x)  f(y) whenever x  y x  y 3x  3y f(x)  f(y), so if x  y, then f(x)  f(y), that is, f is one-to-one. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions A function f:AB with A,B  R is called strictly increasing, if x,yA (x < y  f(x) < f(y)), and strictly decreasing, if x,yA (x < y  f(x) > f(y)). Obviously, a function that is either strictly increasing or strictly decreasing is one-to-one. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions A function f:AB is called onto, or surjective, if and only if for every element bB there is an element aA with f(a) = b. In other words, f is onto if and only if its range is its entire codomain. A function f: AB is a one-to-one correspondence, or a bijection, if and only if it is both one-to-one and onto. Obviously, if f is a bijection and A and B are finite sets, then |A| = |B|. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions Examples: In the following examples, we use the arrow representation to illustrate functions f:AB. In each example, the complete sets A and B are shown. Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions Linda Max Kathy Peter Boston New York Hong Kong Moscow Is f injective? No. Is f surjective? Is f bijective? Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions Linda Max Kathy Peter Boston New York Hong Kong Moscow Is f injective? No. Is f surjective? Yes. Is f bijective? Paul Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions Linda Max Kathy Peter Boston New York Hong Kong Moscow Lübeck Is f injective? Yes. Is f surjective? No. Is f bijective? Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions Linda Max Kathy Peter Boston New York Hong Kong Moscow Lübeck Is f injective? No! f is not even a function! Fall 2002 CMSC 203 - Discrete Structures

Properties of Functions Linda Boston Is f injective? Yes. Is f surjective? Is f bijective? Max New York Kathy Hong Kong Peter Moscow Helena Lübeck Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Inversion An interesting property of bijections is that they have an inverse function. The inverse function of the bijection f:AB is the function f-1:BA with f-1(b) = a whenever f(a) = b. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Inversion Example: f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Lübeck f(Helena) = New York Clearly, f is bijective. The inverse function f-1 is given by: f-1(Moscow) = Linda f-1(Boston) = Max f-1(Hong Kong) = Kathy f-1(Lübeck) = Peter f-1(New York) = Helena Inversion is only possible for bijections (= invertible functions) Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Inversion Linda Boston f Max New York f-1 f-1:CP is no function, because it is not defined for all elements of C and assigns two images to the pre-image New York. Kathy Hong Kong Peter Moscow Helena Lübeck Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Composition The composition of two functions g:AB and f:BC, denoted by fg, is defined by (fg)(a) = f(g(a)) This means that first, function g is applied to element aA, mapping it onto an element of B, then, function f is applied to this element of B, mapping it onto an element of C. Therefore, the composite function maps from A to C. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Composition Example: f(x) = 7x – 4, g(x) = 3x, f:RR, g:RR (fg)(5) = f(g(5)) = f(15) = 105 – 4 = 101 (fg)(x) = f(g(x)) = f(3x) = 21x - 4 Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Composition Composition of a function and its inverse: (f-1f)(x) = f-1(f(x)) = x The composition of a function and its inverse is the identity function i(x) = x. Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Graphs The graph of a function f:AB is the set of ordered pairs {(a, b) | aA and f(a) = b}. The graph is a subset of AB that can be used to visualize f in a two-dimensional coordinate system. Fall 2002 CMSC 203 - Discrete Structures

Floor and Ceiling Functions The floor and ceiling functions map the real numbers onto the integers (RZ). The floor function assigns to rR the largest zZ with z  r, denoted by r. Examples: 2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4 The ceiling function assigns to rR the smallest zZ with z  r, denoted by r. Examples: 2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3 Fall 2002 CMSC 203 - Discrete Structures

CMSC 203 - Discrete Structures Exercises I recommend Exercises 1 and 15 in Section 1.6. It may also be useful to study the graph displays in that section. Another question: What do all graph displays for any function f:RR have in common? Fall 2002 CMSC 203 - Discrete Structures