Chapter Six Trigonometric Functions

Slides:



Advertisements
Similar presentations
Trigonometric Functions
Advertisements

Analytic Trigonometry Chapter 6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A AAA A A A A.
Trigonometric Functions on the
Trigonometric Functions
Unit 8 Trigonometric Functions Radian and degree measure Unit Circle Right Triangles Trigonometric functions Graphs of sine and cosine Graphs of other.
P.5 Trigonometric Function.. A ray, or half-line, is that portion of a line that starts at a point V on the line and extends indefinitely in one direction.
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
Trigonometry for Any Angle
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
Copyright © 2009 Pearson Addison-Wesley Inverse Circular Functions and Trigonometric Equations.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Chapter 4 Trigonometric Functions Inverse Trigonometric Functions Objectives:  Evaluate inverse sine functions.  Evaluate other inverse trigonometric.
Chapter Six Trigonometric Functions
Inverse Trigonometric
4.7 Inverse Trigonometric functions
Copyright © 2000 by the McGraw-Hill Companies, Inc. Barnett/Ziegler/Byleen Precalculus: A Graphing Approach Chapter Five Trigonometric Functions.
Slide Inverse Trigonometric Functions Y. Ath.
Inverse Trigonometric Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Inverse Sine Function y x y = sin.
Copyright © 2011 Pearson Education, Inc. Slide
Trigonometric Functions Section 1.6. Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc.
Copyright © 2001 by the McGraw-Hill Companies, Inc. Barnett/Ziegler/Byleen Precalculus: Functions & Graphs, 5 th Edition Chapter Five Trigonometric Functions.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 4 Trigonometric Functions.
Section 4.4 Trigonometric Functions of Any Angle.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Identities and Equations.
§5.3.  I can use the definitions of trigonometric functions of any angle.  I can use the signs of the trigonometric functions.  I can find the reference.
Barnett/Ziegler/Byleen Precalculus: Functions & Graphs, 4th Edition
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
Inverse Trigonometric Functions
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Analytic Trigonometry
Inverse Trigonometric Functions
Trig/Precalc Chapter 5.7 Inverse trig functions
2.0 TRIGONOMETRIC FUNCTIONS
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
12-3 Trigonometric Functions of General Angles
Trigonometric Functions of Any Angle
Inverse Trigonometric Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Graphs of Trigonometric Functions
Lesson 4.4 Trigonometric Functions of Any Angle
Copyright © Cengage Learning. All rights reserved.
Lesson 4.7 Inverse Trigonometric Functions
Splash Screen.
13-2 Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
Mrs. Volynskaya Pre-Calculus Chapter 4 Trigonometry
Splash Screen.
Inverse Trigonometric Functions
Inverse Trigonometric Functions
5 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
5 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
Main Ideas of Hon PreCalc Ch. 4 Class 1
Chapter 8: The Unit Circle and the Functions of Trigonometry
Do Now Find the measure of the supplement for each given angle.
Chapter 8: The Unit Circle and the Functions of Trigonometry
Copyright © Cengage Learning. All rights reserved.
10-2 Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
Chapter 8: The Unit Circle and the Functions of Trigonometry
Chapter 8: The Unit Circle and the Functions of Trigonometry
Introduction to College Algebra & Trigonometry
Copyright © Cengage Learning. All rights reserved.
Chapter 9: Trigonometric Identities and Equations
13-2 Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
Chapter 8: The Unit Circle and the Functions of Trigonometry
10-2 Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
10-2 Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
Conversions, Angle Measures, Reference, Coterminal, Exact Values
10-2 Angles of Rotation Warm Up Lesson Presentation Lesson Quiz
Section 4.7.
The Circular Functions (The Unit Circle)
Presentation transcript:

Chapter Six Trigonometric Functions Barnett/Ziegler/Byleen College Algebra with Trigonometry, 6th Edition Chapter Six Trigonometric Functions Copyright © 1999 by the McGraw-Hill Companies, Inc.

Angles (a)  positive (b)  negative (c)  and  coterminal (a)  is a quadrantal (b)  is a third-quadrant (c)  is a second-quadrant angle angle angle 6-1-58-1

Angles (a) Straight angle (b) Right angle (c) Acute angle (d) Obtuse angle 6-1-58-2

Radian Measure 6-1-59

Trigonometric Functions of Acute Angles 0˚ < q < 90° 6-2-60

Trigonometric Functions with Angle Domains For an arbitrary angle  : 6-3-61

Signs of the Trigonometric Functions QUADRANT QUADRANT QUADRANT QUADRANT I II III IV a r b r a b r a b r a b – + + + – + + – – + + b ü sin x = r ý + + – – r csc x = þ b a ü cos x = r ý + – – + r sec x = þ a b ü tan x = a ý + – + – a cot x = þ b 6-3-62

Reference Triangle and Reference Angle 1. To form a reference triangle for  , draw a perpendicular from a point P(a, b) on the terminal side of  to the horizontal axis. 2. The reference angle  is the acute angle (always taken positive) between the terminal side of  and the horizontal axis. 6-4-63

30—60  and 45  Special Triangles ° (  /6) 45 ° 2 (  /4) 2 1 3 45 ° (  /4) 1 60 °  ( /3) 1 6-4-64

Circular Functions 1. For x > 0: 2. For x = 0: 3. For x < 0: In all cases, we define: Where y is the dependent variable and x is the independent variable. 6-5-65

Circular Functions and Trigonometric Trigonometric Function sin x = b 1 = sin ( radians) cos a cos ( tan (  0) = tan ( csc  0) csc ( sec = sec ( cot = cot (  /2 a b b P (cos x , sin x ) (0, 1) r = 1 x units sin x rad x a  2  cos x (–1, 0) (1, 0) (0, –1) 3  /2 6-5-66

Graph of y = sin x Period: 2 Domain: All real numbers Range: [–1, 1] /2 Graph of y = sin x a b b P (cos x , sin x ) (0, 1) 1 x b Period: 2 Domain: All real numbers Range: [–1, 1] Symmetric with respect to the origin a  2  (–1, 0) a (1, 0) y = sin x = b (0, –1) 3  /2 y 1 x       –2 – 2 3 4 -1 6-6-67

Graph of y = cos x Period: 2 Domain: All real numbers Range: [–1, 1] /2 a b b Graph of y = cos x P (cos x , sin x ) (0, 1) 1 x b Period: 2 Domain: All real numbers Range: [–1, 1] Symmetric with respect to the y axis a  2  (–1, 0) a (1, 0) y = cos x = a (0, –1) 3  /2 y 1 x –2  –   2  3  4  -1 6-6-68

Graph of y = tan x Period:  Domain: All real numbers except  /2 + k , k an integer Range: All real numbers Symmetric with respect to the origin Increasing function between asymptotes Discontinuous at x =  /2 + k , k an integer 1 –2  –   2  x 5  3    3  5  – – – 2 2 2 2 2 2 –1 6-6-69

Graph of y = cot x Period:  Domain: All real numbers except k , k an integer Range: All real numbers Symmetric with respect to the origin Decreasing function between asymptotes Discontinuous at x = k , k an integer 1 3    3  – – 2 2 2 2 x –2  –   2  –1 6-6-70

Graph of y = csc x y y = csc x sin 1 = y = sin x 1 x –2  –   2  –1  2  –1 Period: 2 Domain: All real numbers except k , k an integer Range: All real numbers y such that y  –1 or y  1 Symmetric with respect to the origin Discontinuous at x = k , k an integer 6-6-71

Graph of y = sec x y y = sec x cos 1 = y = cos x 1 x –2 – 2 –1      2  –1 Period: 2 Domain: All real numbers except /2 + k, k an integer Symmetric with respect to the y axis Discontinuous at x = /2 + k, k an integer Range: All real numbers y such that y  –1 or y  1 6-6-72

    Step 1. Find the amplitude | A |. Step 2. Solve Bx + C = 0 and = 2  : Bx + C = 0 and Bx + C = 2  C C 2 x = – x = – + B B B Phase shift Period C 2  Phase shift = – Period = B B The graph completes one full cycle as Bx + C varies from 0 to 2  — that is, as x varies over the interval é C C 2  ù ê – , – + ú B B B ë û é C C 2 ù Step 3. Graph one cycle over the interval ê – , – + ú . B B B ë û Step 4. Extend the graph in step 3 to the left or right as desired. 6-7-73

Facts about Inverse Functions For f a one-to-one function and f–1 its inverse: 1. If (a, b) is an element of f, then (b, a) is an element of f–1, and conversely. 2. Range of f = Domain of f–1 Domain of f = Range of f–1 3. 4. If x = f–1(y), then y = f(x) for y in the domain of f–1 and x in the domain of f, and conversely. 5. f[f–1(y)] = y for y in the domain of f–1 f–1[f(x)] = x for x in the domain of f 6-9-74

Inverse Sine Function Sine function     y y = sin x y = arcsin x æ –  2 1 x  2 –1 Sine function y –1 y = sin x y = arcsin x æ  ö y = sin x  1 ,  è 2 ø æ  2 ö –  2 1 , 1 è 2 ø (0,0) (0,0) x x –1 1  2 æ  ö – , –1 –1 æ  ö  è 2 ø –1 , – – è 2 ø 2 é   ù D OMAIN = ê – , ú D OMAIN = [–1, 1] ë 2 2 û é   ù R ANGE = [–1, 1] R ANGE = ê – , ú ë 2 2 û Restricted sine function Inverse sine function 6-9-75

Inverse Cosine Function y 1 x  –1 Cosine function y y = cos x = arccos –1 y y = cos x (–1,  )  (0,1) 1 è æ ø ö  2 ,0 è æ ø ö ,  2  2 x   2 –1 (1,0) (  , –1) x –1 1 D OMAIN = [0,  ] D OMAIN = [–1, 1] R ANGE = [–1, 1] R ANGE = [0,  ] Restricted cosine function Inverse cosine function 6-9-76

Inverse Tangent Function y y = tan x Tangent function 1  2 3  2 x 3  2 – –  2 –1 y y y = tan –1 x  æ  ö y = tan x = arctan x 1 ,  è 4 ø 2 –  2 æ  ö 1 , 1 è 4 ø –1 x x  2 æ  1 ö – , –1 –1 è 4 ø  2 æ  ö –1 , – – è 4 ø æ   ö D OMAIN = (–  ,  ) D OMAIN = ç – , ÷ è 2 2 ø æ   ö R ANGE = ç – , ÷ R ANGE = (–  ,  ) è 2 2 ø Restricted tangent function Inverse tangent function 6-9-77