Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin- Echo Envelope Modulation by D2O  R. Bartucci, R. Guzzi, L. Sportelli,

Slides:



Advertisements
Similar presentations
Line Active Hybrid Lipids Determine Domain Size in Phase Separation of Saturated and Unsaturated Lipids  Robert Brewster, Samuel A. Safran  Biophysical.
Advertisements

Volume 16, Issue 2, Pages (February 2008)
Analysis and Evaluation of Channel Models: Simulations of Alamethicin
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Water and Backbone Dynamics in a Hydrated Protein
Volume 104, Issue 3, Pages (February 2013)
Volume 107, Issue 10, Pages (November 2014)
Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly  Sang Ho Park, Francesca.
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Volume 100, Issue 9, Pages (May 2011)
Daniel M. Freed, Peter S. Horanyi, Michael C. Wiener, David S. Cafiso 
Volume 102, Issue 7, Pages (April 2012)
Volume 90, Issue 1, Pages (January 2006)
Volume 108, Issue 5, Pages (March 2015)
Volume 96, Issue 11, Pages (June 2009)
Rosa Bartucci, Rita Guzzi, Mikael Esmann, Derek Marsh 
Composition Fluctuations in Lipid Bilayers
Volume 84, Issue 2, Pages (February 2003)
Equation of State for Phospholipid Self-Assembly
Orientation of the Infrared Transition Moments for an α-Helix
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Membrane Insertion and Lipid-Protein Interactions of Bovine Seminal Plasma Protein PDC-109 Investigated by Spin-Label Electron Spin Resonance Spectroscopy 
Flexibility of Duplex DNA on the Submicrosecond Timescale
Shuichi Toraya, Katsuyuki Nishimura, Akira Naito  Biophysical Journal 
Volume 75, Issue 4, Pages (October 1998)
Volume 104, Issue 3, Pages (February 2013)
Volume 106, Issue 6, Pages (March 2014)
Volume 96, Issue 1, Pages (January 2009)
Raft Formation in Lipid Bilayers Coupled to Curvature
Water Adsorption Isotherms of Lipids
EPR Spectroscopy Targets Structural Changes in the E
David J. Niedzwiecki, Mohammad M. Mohammad, Liviu Movileanu 
Volume 93, Issue 2, Pages (July 2007)
Analysis and Evaluation of Channel Models: Simulations of Alamethicin
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Michael Katzer, William Stillwell  Biophysical Journal 
Site-Specific Dichroism Analysis Utilizing Transmission FTIR
Volume 112, Issue 1, Pages (January 2017)
Volume 113, Issue 6, Pages (September 2017)
V.P. Ivanova, I.M. Makarov, T.E. Schäffer, T. Heimburg 
Volume 105, Issue 9, Pages (November 2013)
Volume 85, Issue 6, Pages (December 2003)
Volume 96, Issue 11, Pages (June 2009)
Volume 16, Issue 2, Pages (February 2008)
Sunhwan Jo, Joseph B. Lim, Jeffery B. Klauda, Wonpil Im 
Volume 21, Issue 5, Pages (May 2013)
Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 
Volume 96, Issue 2, Pages (January 2009)
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Volume 94, Issue 2, Pages (January 2008)
Site-Directed Spin-Labeling Study of the Light-Harvesting Complex CP29
Hydrogen Bonding in Helical Polypeptides from Molecular Dynamics Simulations and Amide Hydrogen Exchange Analysis: Alamethicin and Melittin in Methanol 
Allison N. Dickey, Roland Faller  Biophysical Journal 
Domain Formation in Model Membranes Studied by Pulsed-Field Gradient-NMR: The Role of Lipid Polyunsaturation  Andrey Filippov, Greger Orädd, Göran Lindblom 
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order  Salvatore Chiantia,
Volume 112, Issue 12, Pages (June 2017)
Volume 83, Issue 3, Pages (September 2002)
Volume 114, Issue 3, Pages (February 2018)
Allosteric Control of Syntaxin 1a by Munc18-1: Characterization of the Open and Closed Conformations of Syntaxin  Damian Dawidowski, David S. Cafiso 
Ion-Induced Defect Permeation of Lipid Membranes
NMR Structures of the Second Transmembrane Domain of the Human Glycine Receptor α1 Subunit: Model of Pore Architecture and Channel Gating  Pei Tang, Pravat.
Scott M. Blackman, Eric J. Hustedt, Charles E. Cobb, Albert H. Beth 
Volume 78, Issue 1, Pages (January 2000)
Volume 85, Issue 3, Pages (September 2003)
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Influence of the Long-Chain/Short-Chain Amphiphile Ratio on Lateral Diffusion of PEG- Lipid in Magnetically Aligned Lipid Bilayers as Measured via Pulsed-Field-Gradient.
Alexander Spaar, Christian Münster, Tim Salditt  Biophysical Journal 
Lipid Librations at the Interface with the Na,K-ATPase
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Presentation transcript:

Intramembrane Water Associated with TOAC Spin-Labeled Alamethicin: Electron Spin- Echo Envelope Modulation by D2O  R. Bartucci, R. Guzzi, L. Sportelli, D. Marsh  Biophysical Journal  Volume 96, Issue 3, Pages 997-1007 (February 2009) DOI: 10.1016/j.bpj.2008.10.024 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 Conventional CW-EPR spectra of the [TOAC8, Glu(OMe)7,18,19] alamethicin analog in aligned phosphatidylcholine bilayers in the fluid (upper row) and gel (lower row) phases. (Solid lines) magnetic field parallel to the membrane normal; (dashed lines) magnetic field perpendicular to the membrane normal. (a) in DOPC at 20°C; (b) in POPC at 20°C; (c) in DMPC at 12°C; and (d) in DPPC at 20°C. Peptide/lipid = 1:100 mol/mol. Total scan width = 100 Gauss. Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Absolute-value Fourier-transform ESEEM spectra of [Glu(OMe)7,18,19] alamethicin F50/5 analogs with TOAC substituted for: (left column) residue 1 (TOAC1-Alm), (center column) residue 8 (TOAC8-Alm), (right column) residue 16 (TOAC16-Alm), in: (a) DMPC bilayers at mole ratio 1:275; (b) DMPC bilayers at 1:100 mol/mol; (c) DMPC bilayers at 1:20 mol/mol; and (d) DOPC bilayers at 1:100 mol/mol. Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 Conventional CW-EPR spectra of [Glu(OMe)7,18,19] alamethicin F50/5 analogs with TOAC substituted for: residue 1, TOAC1-Alm; residue 8, TOAC8-Alm; and residue 16, TOAC16-Alm; in bilayers of DMPC (upper of each pair) or DOPC (lower of each pair) at 77 K. Peptide/lipid = 1:100 mol/mol. Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Effective isotropic hyperfine couplings, ao, for [Glu(OMe)7,18,19] alamethicin TOAC1, TOAC8, and TOAC16 analogs, as indicated, in fluid-phase DMPC (solid horizontal lines) and fluid-phase DPPC (dashed horizontal lines) bilayers (8,9). To establish the transmembrane location of the TOAC labels, the dependence of ao on nitroxide position, n, in the sn-2 chain of spin-labeled phosphatidylcholine, n-PCSL, in DMPC (circles) and DPPC (squares) fluid-phase bilayers is given by the dotted lines (10). All values of ao are given relative to those in methanol, i.e.: Δao =ao(PC) −ao(MeOH), and are constant over a wide range of temperature in the respective fluid phases. The relative order for Δao of TOACm-Alm in fluid-phase phosphatidylcholines is: TOAC1 > TOAC16 > TOAC8, for chain lengths C12–C18 (9). Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Echo-detected EPR spectra of: (left column) residue 1 (TOAC1-Alm), (center column) TOAC8-Alm, and (right column) TOAC16-Alm, in: (a) DMPC bilayers at 1:275 mol/mol; (b) DMPC bilayers at 1:100 mol/mol; (c) DMPC bilayers at 1:20 mol/mol; and (d) DOPC bilayers at 1:100 mol/mol. ED-spectra are recorded for increasing interpulse spacings of (bottom to top) τ = 168, 296, 424, 552, 680, and 804 ns, and are normalized to the maximum central line height. T = 77 K. Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 Dependence of D2O-ESEEM amplitudes on position, n, in the sn-2 chain for spin-labeled phosphatidylcholine (n-PCSL) in DPPC bilayers. Data (open circles) from Erilov et al. (18) are standardized according to Eqs. 1 and 2, and are fitted with a trough-like Boltzmann sigmoid (dotted line) according to Marsh (10). Horizontal lines are the corresponding D2O-amplitudes for 1:100 mol/mol TOACm-Alm analogs in DOPC (solid lines) and DMPC (dashed lines) bilayers, as indicated. The value for TOAC16-Alm in DMPC lies along the baseline. Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 7 Crystal structure for molecule A of native alamethicin ((36); PDB: 1amt) with the TOAC structure from molecule B of Z-TOAC-(L-Ala)2-NHtBu (45) substituted for Aib at residue position 1, 8, or 16 (8). The alamethicin molecule is oriented with the axis of the longer helix perpendicular to the plane of the figure and the N-terminus faces upward from the plane of the figure. Biophysical Journal 2009 96, 997-1007DOI: (10.1016/j.bpj.2008.10.024) Copyright © 2009 Biophysical Society Terms and Conditions