GESMA GESMA PRESENTATION
The systems evaluation and test directorate Main sites GESMA
Groupe d’Etudes Sous-Marines de l’Atlantique FACILITIES LOCATION LANVEOC
C T I A C R E P GOVERNMENTAL EXPERT STUDIES SIMULATIONS TRIALS Prospective International exchanges C T A I C R Threat assesment Studies P E Risk management STUDIES TRIALS SIMULATIONS Performances evaluation Expertise Education
SKILLS Mine Warfare and Mine Warfare Mine Warfare Underwater Operations Ranges Silencing and Mine Warfare Mine Warfare Mine Warfare
FACILITIES Acoustic tanks Trialling vessels (Aventurière, Thétis, Langevin) ROV and experimental AUV (Sea-Twinn, Redermor, Klein 5400)
FACILITIES Acoustic tanks Trialling vessels (Aventurière, Thétis, Langevin) ROV and experimental AUV (Sea-Twinn, Redermor, Klein 5400) Magnetic environment simulator Sonar MMI & sonar performance prediction system In situ sonar tests equipment Combined magnetic, electric & acoustic data acquisition (AMI)
28 workers and secretaries STAFF 28 workers and secretaries 42 PhD’s or equivalent 34 Technicians Total : 104 employees
Capabilities of The REDERMOR Unmanned Underwater Vehicle
Previous Versions Capteurs: différents de la nouvelle version (INS, DVL) Version du haut: véhicule manoeuvrant (V. propulseurs) avec une antenne française Version du milieu: véhicule manoeuvrant avec une antenne anglaise Version basse: véhicule rapide (pas de propulseurs auxiliaires mais gouvernes)
REDERMOR II Actuators 4 main thrusters 3 vertical thrusters 1 transverse thruster 2 pairs of horizontal fins 1 rudder 1 canard GPS: alignement de la centrale au départ et recalage si pas d’amers au fond CTD: utilisé en navigation pour améliorer le calcul de la vitesse du doppler (traitement réalisé dans la centrale inertielle) EM log: peu utile Echosondeur vetical: fournit l’altitude du véhicule Capteur de pression: fournit l’immersion du véhicule
REDERMOR II Intern Elements Battery Processors Sonar processors CAN Network Batterie: 4 heures à 5noeuds - 10 heures à 1 nœud (amélioré par le changement des hélices) Calculateurs: sous Linux CAN Network: Can Big Box dans les fond bombés avant et arrière - intérêt: limitation de la connectique entre les fonds bombés et les calculateurs (architecture précédente: liaison séries entre les équipements et les calculateurs => beauc oup de connectiques et donc de riques de pannes)
Navigation Navigation Sensors Inertial Navigation System Doppler Velocity Log Vertical Echosounder Pressure transducer EM log GPS CTD Pingers Relative position Nautronix or TrackPointII Absolute position Gib Safety
Navigation
REDERMOR II Perception sensors Front Looking Sonar Side Scan Sonar Obstacle detection Movement estimation: matching between echoes in the different images (CML) Side Scan Sonar Position estimation: matching with the Feature Map Database 5 10 15 20 25 30 FLS: 2 fonctions: détection d’obstacles (vers le bas - le sonar est orienté de 15 deg vers le bas) estimation du déplacement du véhicule entre deux pings consécutifs (recherhce d’objets communs dans les deux images consécutives et déduction du déplacement) SSS: Matching entre base de données et images sonars ES: détection d’obstacles 10 ES: 3 orientés vers le haut, 4 horizontaux et trois vers le bas Echosounder Network Obstacle detection
Communication Fiber optic Acoustic Radio link Workshop link test collecting data Acoustic Low rate Emergency stop Mission modification High rate Images from sonars Radio link Low rate Move the AUV High rate Collecting data Mission modification Workshop link Serial link Ethernet Bus Can link Modem acoustique bas débit F= 34kHz Modulation fonction de l’environnement (caractérisation a priori) et de la taille des messages Débits: 20bps(chirp) ou 150bps (frequency hopping) ou 300 bps (MFSK) Modem acoustique haut débit F=34 ou 53 kHz avec égaliseur (Decision Feedback Equalizer) Antennes avec 4 capteurs Débit: 20 kbps (BPSK ou QPSK) Modem hertzien Tests du véhicule en surface Eloignement du véhicule de sa zone de lancement Nautronix Base ultra courte GIB Bouées en surface équipées de récepteurs GPS et de modem Traitement des données en surface sur la zone de surveillance
REDERMOR II At Sea Trial Agenda October2002 - december 2003: Integration and tests of the software modules Global verification Tests in ROV configuration January - february 2004 Autonomous mission Octobre/Novembre Vérification du dialogues entre les calculateurs et les éléments du véhicule de Janvier à Juillet Intégration des modules et passage progressif du mode ROV au mode AUV Octobre: Mission autonome totale programmation de la mission par un opérateur puis réalisation de la mission par le véhicule seul
Non Traditional Navigation UUV Guidance and Control Research Project
Development of Generic Tools for underwater mobile robots Main Goal Development of Generic Tools for underwater mobile robots Main objectives : Precise navigation (for drift limitation) by sonar and inertial data fusion ; Development of high level functions : image processing, mapping and localization, mission planning and control ; Hardware and software Integration for at sea demonstration. Final Demonstration : To rally different mission areas for operation achievement To use sonars for mapping and localization But: Démontrer l’intérêt des sonars pour aider à la navigation, le guidage et le contrôle d’un AUV Pour cela, nous avons dû développer des fonctions de planification et de gestion de mission Validation à la mer sur un véhicule expérimental
General System Architecture Perception environment, internal Decision Action planning, guidance, control / command Functionalities: - are activated by messages (requests) - send back messages (events) - exchange data through shared memory Execution Monitoring send requests when events occur according with Behaviors specifications. Trois parties: Perception capteurs traditionnels (INS, DVL, capteur de pression) capteurs non traditionnels (FLS, SSS) Estimateur d’état (accélérations, vitesses, cap, roulis, tangage, position) FMG ( traitement d’images sonar) FMP (matching base de données - images et calcul de l’erreur de position) State Generator (Calcul de osition à partir du SE, du GPS, du FMP) Decision Mission Controller (Vérifie le bon fonctionnement de la mission et envoie des événements si problème) Action Global Planner (Planification d’itinéraires) Local Planner (Planification de trajectoires) Guidage (Calcul du torseur de vitesses) Contrôleur (Calcul des consignes des actionneurs) PROCOSA: Assure le dialogue entre les modules et lance des requêtes vers les modules Echange au travers d’une mémoire partagée Validation des modules et du fonctionnement global sur simulateur puis en mer
Mission Control with Petri Nets description of behavior event + information actions = request for computation towards servers (sockets) event + results ProCoSA = programming and execution monitoring of autonomous systems (® ONERA) EdiPet : graphic user interface for Petri nets generation (places for behavioral state, transitions for actions, events for messages) JdP : Petri player automata (LISP) to run the system VisuPet: possible display of the behavior states during mission execution added value : integration of independent sub-systems, behavior specification identical to execution monitoring 4
Mission Definition execution of operations at specific mission areas partially known environment and mission constraints ability to adapt the mission plan with unexpected events mission start point mission end point no use of active sensors forbidden area operation depth constraints area high density landmark area (localization) operation
Operations Planning : Results Area survey: one-direction scan Pipe following Object inspection with SSS Object research: spiral scan
CML & Navigation Recalage par sonar latéral Recalage par sonar frontal FMP - SSS CML - FLS GPS Pression CTD INS Loch EM Kalman Filter State Estimator Gene rator Doppler S. latéral S. frontal Recalage par sonar frontal
Simulation in Underwater Robotics
Side-Scan Sonar & Forward Looking Sonar Simulation workshop Calcul de la vitesse de rotation Speed Output I model 1 rad_over_s first order filter 1/R efficiancy W Cv Torke Bias Pc Pv P_a_vide P Wo Offset Cons_to_rad_over_s C |u| Abs 1/u 1_over_U 3 Hydrodynamic Torke 2 Tension Cons current I Propulseur modélisé par simulink Side-Scan Sonar & Forward Looking Sonar simulation 3-D interface
Robot Simulation Server Vehicle simulation Strains: actuators, vehicle hydrodynamics, static strains, external interactions Sensors (Loch Doppler, pressure sensor, Motion Reference Unit, Ultra-Short Base Line...) Other components: battery, acoustic communication... Example of component simulation : Strains sensors I III II M -1 *F Calcul de la vitesse de rotation Speed Output I model 1 rad_over_s first order filter 1/R efficiancy W Cv Torke Bias Pc Pv P_a_vide P Wo Offset Cons_to_rad_over_s C |u| Abs 1/u 1_over_U 3 Hydrodynamic Torke 2 Tension Cons current I Propeller (simulink module )
Platform simulators VAMA RMHS / REDERMOR Remora
Sonar Simulation Server Simulation using Raytracing method with noise
Environment Server Environment Server : global or local data 2-D maps (currents, isobathymetry, sound speed, temperature, textures) 3-D maps (bottom, objects) bathymetry server
MMI : Viewing and Results Access to settings and 2-D situation, 3-D view
Conclusion and Prospects
Covert REA evaluation studies
Now contracting for the AUV Covert REA project Main goal Testbed AUV for covert REA evaluation Multi sensors fusion Final products from REA Navigation adaptability Now contracting for the AUV
The TRIDENT acoustic system Interest of real-time acoustic communication for mine and antisubmarine warfare. The GESMA needs to provide an AUV with an high data rate acoustic link. That is why, we drive a project whose aim is to design a receiver able to cope with all perturbations induced by shallow water propagation. Communications over rapidly time varying channels know an active research with development of coherent receivers able to track the fluctuation of such harsh channels. So, this presentation will show you the first results of our last three weeks of sea trials. Ecole Nationale Supérieure des Télécommunications de Bretagne Brest FRANCE Joël TRUBUIL Joël LABAT Thierry LE GALL Groupe d ’Études Sous-Marines de l ’Atlantique Brest FRANCE Gérard LAPIERRE
The TRIDENT system
Array Battery Modem Water depth ~22m 1 m Camera 500, 1000 & 2000 m 20cm ~ 5 High data rate up-link Array Acoustic downlink Battery Modem Water depth ~22m 1 m Camera Based on coding and space diversity, the system is mainly composed of an autonomous underwater unit with camera, elctronic circuits (acquisition, DSP, image compression, coding, modulator, power amplification) and omnidirectionnal transducer and a surface unit with antenna array for reception (omni directional hydrophones), transducer for transmission ,electronic circuits , a PC computer which integrates blind equalization and associated software including real time image decompression and display. Acoustic downlink is used to control the underwater unit (compression ON/OFF, compression factor, source level, bit rate, modulation…). Acoustic uplink is used to transmit images and other parameters at various programmable bit rates (from 8 to 23 kbps). 500, 1000 & 2000 m
A potential application... Investigation of a mine by a diver: October 2002 Bay of Brest 1000m range Video transmission Bit rate: 10 kbps In this paper, a review of a project driven by GESMA and ENST-Bretagne is presented. An interesting approach was proposed by Labat et al. Its main properties are an improved robustness and convergence speed brought by spatial diversity and blind adaptation. This new receiver integrated into a DSP plate-form has shown a good behavior on UWA communication signals where channel is very severe Experimental results are clearly convincing. As a conclusion, real time processing is really convincing and an acoustic link of 20 kbps is currently designing. Sea trials in 2002 will be very exciting to do.
Sea-twin Array Water depth ~22m ~ 1000 m High data rate up-link 20cm ~ 5 High data rate up-link Sea-twin Array Acoustic downlink Water depth ~22m ~ 1000 m
A potential application... Investigation of a mine by an AUV : June 2003 Bay of Brest 1000m range Video transmission Bit rate: 10 kbps In this paper, a review of a project driven by GESMA and ENST-Bretagne is presented. An interesting approach was proposed by Labat et al. Its main properties are an improved robustness and convergence speed brought by spatial diversity and blind adaptation. This new receiver integrated into a DSP plate-form has shown a good behavior on UWA communication signals where channel is very severe Experimental results are clearly convincing. As a conclusion, real time processing is really convincing and an acoustic link of 20 kbps is currently designing. Sea trials in 2002 will be very exciting to do.
Futur
Axes de progrès Portage des développements sur la plate-forme Redermor Homing et docking Détection et évitement d ’obstacles Intelligence embarquée Optimisation de navigation Méthode et outils d ’essais Simulation Évaluation technico-opérationnelle
Simulation - Schéma directeur Pérenniser et industrialiser les développements déjà réalisés S ’interfacer avec les architectures de plus haut niveau (Wargame, ITCS) Développer les briques « fonctions »(sonar, interférences, communication, signature, environnement, ...) Développer l ’approche méthodologique utilisée dans la simulation pour l ’acquisition (Prototypage rapide, Identification des paramètres d ’un modèle)