A bottom-up approach for extracting urban ontologies: the case of Brussels UrbIS 2 R. Billen, Unité de Géomatique, Université de Liège B. Cornélis, SPIRAL,

Slides:



Advertisements
Similar presentations
INSPIRE Drafting Team „Data Specifications“
Advertisements

Three-Step Database Design
Andrea Maurino Web Service Design Methodology Batini, De Paoli, Maurino, Grega, Comerio WP2-WP3 Roma 24/11/2005.
Ontological Resources and Top-Level Ontologies Nicola Guarino LADSEB-CNR, Padova, Italy
Short presentation of PURR Espon 2013 internal seminar, Liege Steinar Johansen Norwegian Institute for Urban and Regional Research (NIBR)
Unité 3 Leçon oui! Yes! 2. mais oui! Sure! 3. Bien sûr! Of course! 4. Non! No 5. Mais non! Of course not! 6. Peut-être Maybe 7. Pierre est….. Pierre.
Questions d’ information
Enhance the Attractiveness of Studies in Science and Technology WP 6: Formal Hinders Kevin Kelly Trinity College Dublin WP 6 Co-ordinator.
INSPIRE Service Architecture
On the logic of merging Sebasien Konieczy and et el Muhammed Al-Muhammed.
SEBGIS 2005, Agia Napa, Cyprus, October 31 - November 4, 2005 MECOSIG Adapted to the Design of Distributed GIS F. Pasquasy, F. Laplanche, J-C. Sainte &
A Single Entrance for Access to Cultural Data (Archives, Museums, Libraries, Heritage) at the French Ministry of Culture Knowledge.
Investigating a bottom-up approach for extracting domain ontologies from urban databases Christophe Chaidron 1, Roland Billen 1 & Jacques Teller 2 1 University.
Kick-off meeting Tuesday, June 02, 2015 Anders Östman Imad Abugessaisa.
Human Language Technologies. Issue Corporate data stores contain mostly natural language materials. Knowledge Management systems utilize rich semantic.
2006 Ontopia AS1 Towards an Ontology Design Methodology Initial work Lars Marius Garshol CTO, Ontopia TMRA
Vlasios Voudouris, Jo Wood, Peter Fisher giCentre, Department of Information Science, City University, London, UK Collaborative geoVisualization: Object-Field.
A Review of Ontology Mapping, Merging, and Integration Presenter: Yihong Ding.
How can Computer Science contribute to Research Publishing?
CUI - Université de Genève - IAUGCOST C21 - Lyon –– 1 Ontology storage & management and Integration within 3D city models Gilles Falquet Claudine.
FRE 2672 Urban Ontologies : the Towntology prototype towards case studies Chantal BERDIER (EDU), Catherine ROUSSEY (LIRIS)
Overview of the current architecture TRADUCTIONS Client system Codes in XML Translation in XML XML Import XML Export Domain Tables Codes Translations Graphical.
CUI - Université de Genève - IAUGCOST C21 - Lyon p. 1 Ontology storage & management and Integration within 3D city models Gilles Falquet Claudine.
W ORK P ACKAGE 2 C ONCEPTUAL MODEL Richard Walker 13 January, 2011.
ITEC224 Database Programming
1 Reuse of a repository of conceptual schemas in a large scale project Carlo Batini University of Milano Bicocca, Italy
EXCS Sept Knowledge Engineering Meets Software Engineering Hele-Mai Haav Institute of Cybernetics at TUT Software department.
Introduction to Accounting Information Systems
GeoUML a conceptual data model for geographical data conformant to ISO TC 211 Main GeoUML constructs Alberto BelussiNovembre 2004.
Author: Lornet LD team Reuse freely – Just quote Desired Properties of a MOT Graphic Representation Formalism Simplicity and User Friendliness (win spec,
Integrating Business Process Models with Ontologies Peter De Baer, Pieter De Leenheer, Gang Zhao, Robert Meersman {Peter.De.Baer, Pieter.De.Leenheer,
European Spatial Data Infrastructure Conceptual Schema Language workshop Summary INSPIRE – EuroSDR – CEN/TC 287 WG SDI 13 and 14 Oct 2005, JRC, Ispra,
Nancy Lawler U.S. Department of Defense ISO/IEC Part 2: Classification Schemes Metadata Registries — Part 2: Classification Schemes The revision.
Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Rodrigo RizziStarr, Jose´ Maria Parente de Oliveira IS Concept maps as the first.
Sylvie MABILE presented par Pierre TEILLET 04/09/2013 Guidelines of Statistical Business Register Draft chapter 4: units Meeting of expert group on SBR.
ISOcat introduction 20 March 20121CLARIN-NL ISOcat workshop.
Mining fuzzy domain ontology based on concept Vector from wikipedia category network.
ESPON / Social Preparatory Study on Social Aspects of EU Territorial Development Status: Interim Report Erich Dallhammer (ÖIR)
A Context Model based on Ontological Languages: a Proposal for Information Visualization School of Informatics Castilla-La Mancha University Ramón Hervás.
Interoperability & Knowledge Sharing Advisor: Dr. Sudha Ram Dr. Jinsoo Park Kangsuk Kim (former MS Student) Yousub Hwang (Ph.D. Student)
Lana Abadie1 Conception et optimisation d’une base de données relationnelle pour la configuration d’expériences HEP Implementation and optimization of.
GREGORY SILVER KUSHEL RIA BELLPADY JOHN MILLER KRYS KOCHUT WILLIAM YORK Supporting Interoperability Using the Discrete-event Modeling Ontology (DeMO)
Quality issues in Spatial Databases M. Mostafavi, G. Edwards, R. Jeansoulin CRG & GEOIDE & REVIGIS Victoria, May 2003.
Reporting on Programme of Measures (Art. 13)
1 INTEGRATION OF THE TEXTUAL DATA FOR INFORMATION RETRIEVAL : RE-USE THE LINGUISTIC INFORMATION OF VICINITY Omar LAROUK ELICO -ENS SIB University of Lyon-France.
Metadata Common Vocabulary a journey from a glossary to an ontology of statistical metadata, and back Sérgio Bacelar
1 Resolving Schematic Discrepancy in the Integration of Entity-Relationship Schemas Qi He Tok Wang Ling Dept. of Computer Science School of Computing National.
Issues in Ontology-based Information integration By Zhan Cui, Dean Jones and Paul O’Brien.
CERN Methodology document R. Betemps / EDMS Doc N° Methodology Workshop Catia / Smarteam L’ ateliers de méthodologies Catia / Smarteam 10eme Forum.
ECIMF meeting, Paris Interoperability through semantic labeling with context Andrzej Bialecki.
® Using (testing?) the HY_Features model, 95th OGC Technical Committee Boulder, Colorado USA Rob Atkinson 3 June 2015 Copyright © 2015 Open Geospatial.
Chapter 7 K NOWLEDGE R EPRESENTATION, O NTOLOGICAL E NGINEERING, AND T OPIC M APS L EO O BRST AND H OWARD L IU.
WonderWeb. Ontology Infrastructure for the Semantic Web. IST Project Review Meeting, 11 th March, WP2: Tools Raphael Volz Universität.
OWL Web Ontology Language Summary IHan HSIAO (Sharon)
Semantic Wiki: Automating the Read, Write, and Reporting functions Chuck Rehberg, Semantic Insights.
Serge DARRINÉ INSEE, Cooperation with Europe and Asia 17/02/2015 Press releases The experience of INSEE, France.
CUI - Université de Genève - IAUGCOST C21 - Lyon COST C21 Swiss projects (proposals) University of Zurich - R. Weibel Swiss Polytechnic School,
Lisbon, 30 th March 2016 Gianluca Luraschi Gonçalo Cadete “Towards a Methodology for Building.
ISOcat introduction 10 May /20111CLARIN-NL ISOcat workshop.
WORKING GROUP MILITARY TERMINOLOGY
A Universal Technique for Relating Heterogeneous Data Models
Methontology: From Ontological art to Ontological Engineering
Rafael Almeida, Inês Percheiro, César Pardo, Miguel Mira da Silva
Toitototototoot WG ESA – 14th October 2011 Bonn Agenda item 8 Consideration of social and economic concerns in setting targets Ministère de l'Écologie,
SNOMED-CT representation Radiologic report Admission Letter
Block Matching for Ontologies
TERMINOLOGY WORKING GROUP (TWG)
Classification of learning activities
TERMINOLOGY WORKING GROUP (TWG)
Motivation It can effectively mine multi-modal knowledge with structured textural and visual relationships from web automatically. We propose BC-DNN method.
Presentation transcript:

A bottom-up approach for extracting urban ontologies: the case of Brussels UrbIS 2 R. Billen, Unité de Géomatique, Université de Liège B. Cornélis, SPIRAL, Université de Liège

Context Brussels UrbIS 2 is an urban spatial database (~1:1000) covering the whole Brussels Region Composed of –Topo base –ADM base –PWN base In 1998, we took part in the DB reengineering process several projects (98 … 08)

Projects aims Create a posteriori –Data dictionary (98) –Conceptual Data Models (98) –Data quality reports (00) Reengineering of the DB Interoperability Extraction of domain ontologies was not an explicit objective

Methodology Knowledge Geo team Draft output CIRB team Extraction of ontologies Existing documentation Comments Final output yes no

Existing documentation Database schemas Relational tables Data acquisition specifications (TOPO) Data inventory …

Spatial relationships Existant: –inconsistent hierarchical relationships between objects –No spatial relationships All spatial relationships (topological) between all objects were identified Topological Matrix CDM It has been a crucial step in the understanding of the urban objects

Objects definitions « Existing » definitions were mainly related to graphical representations –Lobjet commune correspond à la limite dune commune Based on our enquiries (spatial relationships and objects definitions), we have proposed formal definitions –Lobjet commune correspond au territoire dune commune de la Région Bruxelles- Capitale

Objects definitions Existing –La « Maison » est limmeuble extrait du levé topographique After revision (unfortunately, we had to stick with the current DBs objects) –Lobjet Maison correspond à lemprise au sol dun bâtiment et de ses annexes et de tout autre construction tel que église, chapelle, monument, école, fontaine, serre, abri bus, etc.

Linguistical issues Objects definitions in two languages Objects names in three Firstly produced in French and then translated by CIRB team in Dutch. Remark: –Basic info was translated from Dutch in French…

Projects outputs Data dictionary CDMs Quality report

Domain ontologies Existing –La « Maison » est limmeuble extrait du levé topographique Domain ontology (?) – Never been formalised –Lobjet Maison correspond à lemprise au sol dun bâtiment et de ses annexes Proposed UrbIS objects definition –Lobjet Maison correspond à lemprise au sol dun bâtiment et de ses annexes et de tout autre construction tel que église, chapelle, monument, école, fontaine, serre, abri bus, etc.

Conclusions Ontologies are essential for any urban DB project In case of existing non documented urban DBs, it is necessary to extract them a posteriori A bottom-up approach is obvious Detection of Spatial relationships and representations proved to be necessary step for the extraction of urban ontologies In this project (and the following) extraction of ontologies was not considered as an important step However, it seems obvious with the multi-disciplinarity nature of urban studies that the formalisation of ontologies is a key issue