Day 31: November 23, 2011 Crosstalk ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 31: November 23, 2011 Crosstalk Penn ESE370 Fall2011 -- DeHon
Today Crosstalk How arise Consequences Magnitude Avoiding Penn ESE370 Fall2011 -- DeHon
Capacitance There are capacitors everywhere Already talked about Wires as capacitors Capacitance between terminals on transistor Penn ESE370 Fall2011 -- DeHon
Miller Effect For an inverting gate Capacitance between input and output must swing 2 Vhigh Or…acts as double-sized capacitor Penn ESE370 Fall2011 -- DeHon
Capacitance Everywhere Potentially a capacitor between any two conductors On the chip On the package On the board All wires Package pins PCB traces Cable wires Bit lines Penn ESE370 Fall2011 -- DeHon
Capacitor Dependence Decrease with conductor separation Increase with size Depends on dielectric Penn ESE370 Fall2011 -- DeHon
Parallel Wires Parallel-plate capacitance between wires Penn ESE370 Fall2011 -- DeHon
Wire Capacitance Changes in voltage on one wire may couple through capacitance to another Penn ESE370 Fall2011 -- DeHon
Consequences Qualitative First Penn ESE370 Fall2011 -- DeHon
Driven Wire What happens to a driven wire? Penn ESE370 Fall2011 -- DeHon
Driven Wire Can this be a problem? Victim Clock line Asynchronous control Non-clock used in synchronous system Outputs sampled at clock edge Penn ESE370 Fall2011 -- DeHon
Undriven Wire What happens to undriven wire? Where do we have undriven wires? Penn ESE370 Fall2011 -- DeHon
Clocked Logic CMOS driven lines Clocked logic Willing to wait to settle Impact is solely on delay May increase delay of transitions Penn ESE370 Fall2011 -- DeHon
Magnitude Quantitative Penn ESE370 Fall2011 -- DeHon
How large is the noise? V1 transitions from 0 to V? Penn ESE370 Fall2011 -- DeHon
How large is the noise? V1 transitions from 0 to V Penn ESE370 Fall2011 -- DeHon
Noise Magnitude Penn ESE370 Fall2011 -- DeHon
SPICE C1=10pF, C2=20pF Penn ESE370 Fall2011 -- DeHon
Good (?) Capacitance High capacitance to ground plane Limits node swing from adjacent conductors Penn ESE370 Fall2011 -- DeHon
Driven Line What happens when victim line is driven? Penn ESE370 Fall2011 -- DeHon
Driven Line Driven line Recovers with time constant: R2(C1+C2) Penn ESE370 Fall2011 -- DeHon
Spice: R2=1K, C1=10pF, C2=20pF Penn ESE370 Fall2011 -- DeHon
Magnitude of Noise on Driven Line Magnitude of diversion depends on relative time constants t1, t2 t1<< t2 full diversion, then recover t1>> t2 Charge capacitor faster than line 1 can change little noise Penn ESE370 Fall2011 -- DeHon
Magnitude of Noise on Driven Line Magnitude of diversion depends on relative time constants t1, t2 t1<< t2 t1>> t2 Penn ESE370 Fall2011 -- DeHon
Spice: C1=1pF, C2=2pF Penn ESE370 Fall2011 -- DeHon
Simultaneous Transition What happens if transition in opposite directions? Penn ESE370 Fall2011 -- DeHon
Simultaneous Transition What happens if transition in opposite directions? Must charge C1 by 2V Or looks like 2C1 between wires Penn ESE370 Fall2011 -- DeHon
Where Arise Penn ESE370 Fall2011 -- DeHon
Cables and PCB Wires Source; http://en.wikipedia.org/wiki/File:Flachbandkabel.jpg Penn ESE370 Fall2011 -- DeHon
Printed Circuit Board Source: http://en.wikipedia.org/wiki/File:Testpad.JPG Penn ESE370 Fall2011 -- DeHon
Interconnect Cross Section Image from Rabaey text, pg48, Fig2-7k ITRS 2007 31 Penn ESE370 Fall2011 -- DeHon 31
IC Metalization Source: http://en.wikipedia.org/wiki/File:Silicon_chip_3d.png Penn ESE370 Fall2011 -- DeHon
Standard Cell Area inv nand3 All cells uniform height Width of channel determined by routing Cell area Identify the full custom and standard cell regions on 386DX die http://microscope.fsu.edu/chipshots/intel/386dxlarge.html Penn ESE370 Fall2011 -- DeHon
Wires Will be capacitively coupled to many adjacent wires of varying degrees Penn ESE370 Fall2011 -- DeHon
bit lines, word lines wordline bitline Penn ESE370 Fall2011 -- DeHon Source: http://techon.nikkeibp.co.jp/article/HONSHI/20071219/144399/
Addressing Penn ESE370 Fall2011 -- DeHon
What can we do? How can we reduce? Penn ESE370 Fall2011 -- DeHon
What can we do? Orthogonal routing layers Widen spacing between wires Avoid parallel coupling vertically Widen spacing between wires Particularly critical path wires Limit length two wires run in parallel Separate with power planes Separate with ground/power wires Penn ESE370 Fall2011 -- DeHon
Admin HW6 Out by time return from break Next week Project 3 out Lecture Monday and Wednesday Lab on Friday Penn ESE370 Fall2011 -- DeHon
Idea Capacitance is everywhere Especially between adjacent wires Will get “noise” from crosstalk Clocked and driven wires Slow down transitions Undriven wires voltage changed Can cause spurious transitions Penn ESE370 Fall2011 -- DeHon