1/11/2017 What is Saturn’s Largest moon?.

Slides:



Advertisements
Similar presentations
The Solar System Chapter 12 Section 1 Pgs
Advertisements

The Outer Worlds.
The Outer Planets Chap 16, Sec 4.
Neptune. Discovery John Couch Adams, Cambridge mathematician, predicted the existence of an unseen planet. Uranus was being pulled slightly out of position.
Uranus, Neptune, and Pluto
Uranus and Neptune Astronomy 311 Professor Lee Carkner Lecture 19.
Uranus and Neptune Astronomy 311 Professor Lee Carkner Lecture 19.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Chapter 24: Modified. Uranus Chance discovery by William Herschel in Scanning the sky for nearby objects using parallax.
The Gas Giant Planets Chapter 29 Section 3
Uranus.
The Outer Worlds Chapter Sixteen. Guiding Questions 1.How did Uranus and Neptune come to be discovered? 2.What gives Uranus its distinctive greenish-blue.
Uranus and Neptune Uranus: general information –Discovered in 1781 (Herschel) –Radius about 4x that of Earth –Mass about 14.5x that of Earth –Nearly featureless.
The Planets.
Uranus, Neptune, and Pluto
The Outer Worlds. Update! International Astronomical Union (IAU) voted on the re- definition of planets in Prague on Aug. 24, Pluto is no longer.
Our Solar System.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
NOTES: Saturn 9.5 D earth Same atmosphere as Jupiter, but cloud obscures belts and zones. Tilt 26.7 degrees, Day = 10.5 hours, very oblate 1/20th magnetic.
The Inner Planets Chapter Terrestrial Planets Mercury, Venus, Earth, Mars Mostly solid rock with metallic cores Impact craters.
The Jovian Planets, Part III Uranus and Neptune. URANUS The God of the Heavens.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Chapter 13 Uranus and Neptune. Uranus was discovered in 1781 by Herschel; first planet to be discovered in more than 2000 years Little detail can be seen.
Universe Tenth Edition Chapter 14 Uranus, Neptune, Pluto and the Kuiper Belt: Remote Worlds Roger Freedman Robert Geller William Kaufmann III.
Planets. The terrestrial planets and some large moons.
The Planets in our Solar System. The Planets Do you know a saying to remember the planets in order? My Very Eager Mother Just Severed Us Nine Pizzas Do.
Astronomy The Planets and Their Moons. The Planets Solar System to not to scale or distance!
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
THE OUTER PLANETS.
The Solar System.
The Inner & Outer Planets
Ch-24 Uranus, Neptune & Pluto.
Our Solar System.
© 2017 Pearson Education, Inc.
Reviewing the Inner Planets
Section 3: The Outer Planets
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
The Sun 99.8% of the mass of the solar system is in the Sun.
The Solar System: The Sun & the Planets
Section 4: The Outer Planets
Planets.
Section 17.2 The Planets.
THE INNER PLANETS.
Uranus, Neptune, and Pluto
14.4 The Solar System Outer Planets (page 562)
The Solar System: The Sun & the Planets
Jupiter-Like Planets The Jovian Planets Jupiter Saturn Uranus Neptune.
Bell work Every planet that has an atmosphere has weather. Jupiter's Great Red Spot appears to be very similar to a hurricane system on Earth, but it has.
Section 4: The Outer Planets
Jovian Planet Systems.
The outer planets.
Uranus, Neptune, and Pluto
The Outer Planets.
Section 4 – pg 562 The Outer Planets
The Solar System Chapter 12 Section 1 Pgs
27.4 Board Questions Answer in complete sentences.
The Planets of our solar system Part Two: Outer Gas Giants.
Section 3: The Outer Planets
Uranus.
Our Solar System Planet Database.
Our SUN At the Center of our Solar System
The Gas Giants...and Pluto
The Planets of our solar system Part Two: Outer Gas Giants.
Uranus, Neptune, and Pluto
THE OUTER PLANETS.
The Atmospheres of the Outer Jovian Worlds
Neptune And their moons
Uranus Diameter 4DE Rotation Period hours
Neptune And their moons
Presentation transcript:

1/11/2017 What is Saturn’s Largest moon?

Uranus, Neptune, and Pluto

Outline I. Uranus A. The Discovery of Uranus B. The Motion of Uranus C. The Atmosphere of Uranus D. The Interior of Uranus E. The Rings of Uranus F. The Moons of Uranus G. A History of Uranus II. Neptune A. The Discovery of Neptune B. The Atmosphere and Interior of Neptune C. The Rings of Neptune D. The Moons of Neptune E. The History of Neptune

Outline (continued) III. Pluto A. The Discovery of Pluto B. Pluto as a Planet C. The Origin of Pluto and Charon

Uranus Chance discovery by William Herschel in 1781, while scanning the sky for nearby objects with measurable parallax: discovered Uranus as slightly extended object, ~ 3.7 arc seconds in diameter.

The Motion of Uranus Very unusual orientation of rotation axis: Almost in the orbital plane. 97.9o 19.18 AU Possibly result of impact of a large planetesimal during the phase of planet formation. Large portions of the planet exposed to “eternal” sunlight for many years, then complete darkness for many years!

The Atmosphere of Uranus Like other gas giants: No surface. Gradual transition from gas phase to fluid interior. 83 % H; 15 % He, 2 % Methane, trace ammonia and water vapor. Optical view from Earth: Blue color due to methane, absorbing longer wavelengths Cloud structures only visible after artificial computer enhancement of optical images taken from Voyager spacecraft.

The Structure of Uranus’ Atmosphere Only one layer of Methane clouds (in contrast to 3 cloud layers on Jupiter and Saturn). 3 cloud layers in Jupiter and Saturn form at relatively high temperatures that occur only very deep in Uranus’ atmosphere. Uranus’ cloud layer difficult to see because of thick atmosphere above it. Also shows belt-zone structure  Belt-zone cloud structure must be dominated by planet’s rotation, not by incidence angle of sun light!

Cloud Structure of Uranus Hubble Space Telescope image of Uranus shows cloud structures not present during Voyager’s passage in 1986.  Possibly due to seasonal changes of the cloud structures.

Ices of water, methane, and ammonia, mixed with hydrogen and silicates The Interior of Uranus Average density ≈ 1.29 g/cm3  larger portion of rock and ice than Jupiter and Saturn. Ices of water, methane, and ammonia, mixed with hydrogen and silicates

The Magnetic Field of Uranus No metallic core  no magnetic field was expected. But actually, magnetic field of ~ 75 % of Earth’s magnetic field strength was discovered: Offset from center: ~ 30 % of planet’s radius! Inclined by ~ 60o against axis of rotation. Possibly due to dynamo in liquid-water/ammonia/methane solution in Uranus’ interior. Magnetosphere with weak radiation belts; allows determination of rotation period: 17.24 hr.

The Magnetosphere of Uranus Rapid rotation and large inclination deform magnetosphere into a corkscrew shape. UV images During Voyager 2 flyby: South pole pointed towards sun; direct interaction of solar wind with magnetosphere  Bright aurorae!

Apparent motion of star behind Uranus and rings The Rings of Uranus Rings of Uranus and Neptune are similar to Jupiter’s rings. Confined by shepherd moons; consist of dark material. Apparent motion of star behind Uranus and rings Rings of Uranus were discovered through occultations of a background star

The Rings of Neptune Interrupted between denser segments (arcs) Ring material must be regularly re-supplied by dust from meteorite impacts on the moons. Interrupted between denser segments (arcs) Made of dark material, visible in forward-scattered light. Focused by small shepherd moons embedded in the ring structure.

1/12/2017 What is special about Uranus’s Rotation

The Moons of Uranus 5 largest moons visible from Earth. 10 more discovered by Voyager 2; more are still being found. Dark surfaces, probably ice darkened by dust from meteorite impacts. 5 largest moons all tidally locked to Uranus.

Interiors of Uranus’s Moons Large rock cores surrounded by icy mantles.

The Surfaces of Uranus’s Moons (1) Oberon Titania Old, inactive, cratered surface, Largest moon but probably active past. Heavily cratered surface, but no very large craters. Long fault across the surface. Dirty water may have flooded floors of some craters. Active phase with internal melting might have flooded craters.

The Surfaces of Uranus’s Moons (2) Umbriel Ariel Dark, cratered surface Brightest surface of 5 largest moons Clear signs of geological activity No faults or other signs of surface activity Crossed by faults over 10 km deep Possibly heated by tidal interactions with Miranda and Umbriel.

Uranus’s Moon Miranda Most unusual of the 5 moons detected from Earth Ovoids: Oval groove patterns, probably associated with convection currents in the mantle, but not with impacts. 20 km high cliff near the equator Surface features are old; Miranda is no longer geologically active.

Neptune Discovered in 1846 at position predicted from gravitational disturbances on Uranus’s orbit by J. C. Adams and U. J. Leverrier. Blue-green color from methane in the atmosphere 4 times Earth’s diameter; 4 % smaller than Uranus

The Atmosphere of Neptune The “Great Dark Spot” Cloud-belt structure with high-velocity winds; origin not well understood. Darker cyclonic disturbances, similar to Great Red Spot on Jupiter, but not long-lived. White cloud features of methane ice crystals

The Moons of Neptune Unusual orbits: Two moons (Triton and Nereid) visible from Earth; 6 more discovered by Voyager 2 Triton: Only satellite in the solar system orbiting clockwise, i.e. “backward”. Nereid: Highly eccentric orbit; very long orbital period (359.4 d).

The Surface of Triton Very low temperature (34.5 K)  Triton can hold a tenuous atmosphere of nitrogen and some methane; 105 times less dense than Earth’s atmosphere. Surface composed of ices: nitrogen, methane, carbon monoxide, carbon dioxide. Possibly cyclic nitrogen ice deposition and re-vaporizing on Triton’s south pole, similar to CO2 ice polar cap cycles on Mars. Dark smudges on the nitrogen ice surface, probably due to methane rising from below surface, forming carbon-rich deposits when exposed to sun light.

The Surface of Triton (2) Ongoing surface activity: Surface features probably not more than 100 million years old. Large basins might have been flooded multiple times by liquids from the interior. Ice equivalent of greenhouse effect may be one of the heat sources for Triton’s geological activity.

Discovered 1930 by C. Tombaugh. Pluto Discovered 1930 by C. Tombaugh. Existence predicted from orbital disturbances of Neptune, but Pluto is actually too small to cause those disturbances.

Pluto as a Dwarf Planet Virtually no surface features visible from Earth. ~ 65 % of size of Earth’s Moon. Highly elliptical orbit; coming occasionally closer to the sun than Neptune. Orbit highly inclined (17o) against other planets’ orbits  Neptune and Pluto will never collide. Surface covered with nitrogen ice; traces of frozen methane and carbon monoxide. Daytime temperature (50 K) enough to vaporize some N and CO to form a very tenuous atmosphere.

Pluto’s Moon Charon Discovered in 1978; about half the size and 1/12 the mass of Pluto itself. Tidally locked to Pluto. Hubble Space Telescope image

Pluto and Charon Orbit highly inclined against orbital plane. From separation and orbital period: Mpluto ~ 0.2 Earth masses. Density ≈ 2 g/cm3 (both Pluto and Charon)  ~ 35 % ice and 65 % rock. Large orbital inclinations  Large seasonal changes on Pluto and Charon.

The Origin of Pluto and Charon Probably very different history than neighboring Jovian planets. Older theory: Pluto and Charon formed as moons of Neptune, ejected by interaction with massive planetesimal. Mostly abandoned today since such interactions are unlikely. Modern theory: Pluto and Charon members of Kuiper belt of small, icy objects. Collision between Pluto and Charon may have caused the peculiar orbital patterns and large inclination of Pluto’s rotation axis.

Recent Pluto Pictures

Is Pluto a Planet? Answer these questions: Does pluto have moons? What is the size of pluto? What is the density of Pluto? How long is Pluto’s day/year? What is the Temperature on pluto? Does Pluto have an atmosphere? Does pluto have a Magnetic Field? What is pluto composed of? State which qualities should be used to describe a planet and which ones shouldn’t using other planets as examples. At the end, state whether or not Pluto should be a planet based on these qualities.

1/13 Which of these is a Binary Compound? Ammonium Sulfide Sodium Chloride Sodium Chlorite

1/13/2017 What is the trait that scientist used to reclassify pluto as a dwarf planet?

Example Pluto has no moons. Other planets, like Mercury and Venus, have no moons which is why it is not a good quality to define planets. (Take note, pluto does have moons, this is an example)