Methylstyrenes – Microwave Spectroscopy

Slides:



Advertisements
Similar presentations
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Advertisements

Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
1 Fourier transform microwave and infrared study of silacyclobutane Cody van Dijk, Samantha van Nest, Ziqiu Chen and Jennifer van Wijngaarden Department.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
A SEMIEXPERIMENTAL EQUILIBRIUM STRUCTURE OF cis-HEXATRIENE FROM MICROWAVE SPECTROSCOPY NORMAN C. CRAIG, YIHUI CHEN, HANNAH A. FUSON, HENGFENG TIAN, and.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
MICROWAVE SPECTRA OF DEUTERIUM ISOTOPOLOGUES OF cis-HEXATRIENE NORMAN C. CRAIG, VINCENT A. ALESSI, YIHUI CHEN, HENRIK EHRHARDT, EMERSON E. FRENCH, HANNAH.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
VIBRATIONAL SATELLITES IN THE ROTATIONAL SPECTRA OF
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
The microwave spectroscopy study of 1,2-dimethoxyethane
Juliane Heitkämper, John C Mullaney, Nick Walker
Rotational Spectroscopy and Search for Methoxymethanol in the ISM
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
ALDO J. APPONI, JAMES J. HOY and LUCY M. ZIURYS
Department of Chemistry
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Stéphane Bailleux University of Lille
Department of Chemistry, University of Wisconsin, Madison
Jacob T. Stewart Department of Chemistry, Connecticut College
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Methylindoles – Microwave Spectroscopy
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Michal M. Serafin, Sean A. Peebles
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Methylstyrenes – Microwave Spectroscopy cis-β-Methylstyrene trans-β-Methylstyrene Objectives Assign the rotational spectra Compare the potential barriers to methyl internal rotation RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, OH.

Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study Fitting Strategy Rotational constants estimated Geometry optimization at ωB97XD/6-311++G(d,p) Barrier height estimated Relaxed potential scan at ωB97XD/6-311++G(d,p) A components were fitted RRFIT, ZFAP Programs A and E components fitted simultaneously XIAM Program Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Equilibrium Structures α-Methylstyrene A (MHz) 3598.5539 B (MHz) 1197.4917 C (MHz) 942.2095 μb=0.33 D > μc=0.15 D > μa=0.02 D cis-β-Methylstyrene A (MHz) 3728.8355 B (MHz) 1093.3866 C (MHz) 902.8941 μa=0.27 D > μb=0.24 D > μc=0.17 D trans-β-Methylstyrene A (MHz) 5045.6034 B (MHz) 867.2295 C (MHz) 745.0565 μa=-0.51 D > μb=0.12 D > μc=-0.04 D Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Relaxed Potential Scans at ωB97XD/6-311++G(d,p) Barrier estimation for trans-β-Methylstyrene α-Methylstyrene cis-β-Methylstyrene trans-β-Methylstyrene Barrier(cm-1) 665.7 704.0 654.9 Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Microwave Rotational Spectra Mini-Cavity FTMW Spectrometer Range : 10.5 – 22.0 GHz Resolution : 2.4 kHz Carrier Gas : 30% He : 70% Ne Backing pressure : 1.5 atm Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Global Fit: cis-β-Methylstyrene Parameter XIAM ωB97XD A (MHz) 3702.3227(3) 3728.8355 B (MHz) 1088.8949(8) 1093.3866 C (MHz) 899.92458(4) 902.8941 ΔJ (kHz) 0.1378(4) - ΔJK (kHz) -0.234(3) ΔK (kHz) 2.178(23) δJ (kHz) -0.00664(16) δK (kHz) 0.949(12) N 144 Δνrms (kHz) 1.866 Parameter XIAM ωB97XD V3 (cm-1) 714(7) 704.0 F0 (GHz) Fixed 152.5 151.9 Iα (uA2) Fixed 3.31 3.33 ε (rad) 0.49(5) 0.47 < (i,a) 80.40(7) 710 < (i,b) 300(2) - < (i,c) 620(2) μa > μb >μc Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Global Fit: trans-β-Methylstyrene Parameter XIAM ωB97XD A (MHz) 5008.8606(16) 5045.6034 B (MHz) 864.68541(10) 867.2295 C (MHz) 741.68899(9) 745.0565 ΔJ (kHz) 0.01812(18) - ΔJK (kHz) 0.1354(10) ΔK (kHz) 0.7(3) δJ (kHz) 0.00257(15) δK (kHz) 0.083(19) N 170 Δνrms (kHz) 1.491 Parameter XIAM ωB97XD V3 (cm-1) 578(3) 654.9 F0 (GHz) 159.9(8) 151.6 Iα (uA2) 3.161(16) 3.33 ε (rad) Fixed 0.00 0.00 < (i,a) 13.20(9) 130 < (i,b) 76.80(9) - < (i,c) 90.00(<0) μa> μb> μc Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

α-Methylstyrene : Preliminary Fits Parameter ωB97XD/ 6-311++G(d,p) ZFAP Fit [A component] XIAM [Global Fit] A (MHz) 3598.5539 3577.0466(8) 3577.0372(9) B (MHz) 1197.4917 1195.9195(5) 1195.92171(22) C (MHz) 942.2095 933.3494(5) 933.3458(3) ΔJ (kHz) - 0.061(6) 0.0658(10) ΔJK (kHz) -0.0411(15) -0.068(14) ΔK (kHz) 0.65(9) 0.45(8) δJ (kHz) 0.0085(6) 0.0061(5) δK (kHz) 0.57(4) 0.72(3) V3 (cm-1) 665.7 603 (8) ε (rad) 0.44 Fixed 0.44 < (i,a) 59.50 50.30(9) N 39 69 Δνrms (kHz) 4.835 6.381 Only the transitions with Ka= 0,1 were fitted μb> μc > μa Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study Transitions with Ka = 2, 3 330-221 4 lines ?? 432-423 4 lines ?? 634-625 3 lines ?? Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Propenyl/Benzene Internal Rotation Relaxed potential scan at ωB97XD/6-311++G(d,p) Barrier Heights = 471.3 cm-1, 230.1 cm-1 Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Conclusion Assigned the microwave rotational spectra and determined the potential barrier to internal rotation of cis-β-Methylstyrene, trans-β-Methylstyrene. Preliminary XIAM fit of α-Methylstyrene can not fit Ka = 2,3 transitions Additional fitting in α-Methylstyrene is probably due to the large amplitude motion of the propenyl (CH2-CH-CH3 )/ Benzene. A (MHZ) B (MHz) C (MHz) Exp. V3(cm-1) Calc. V3(cm-1) cis-β-Methylstyrene 3702.3227(3) 1088.8949(8) 899.92458(4) 714(7) 701.25 trans-β-Methylstyrene 5008.8606(16) 864.68541(10) 741.68899(9) 578(3) 654.90 Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study

Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study Acknowledgement Ohio Supercomputer center Kent State University Methylstyrenes – Internal Rotation: Microwave Spectroscopic Study