Concept 18.2: Eukaryotic gene expression can be regulated at any stage

Slides:



Advertisements
Similar presentations
Regulation of Gene Expression
Advertisements

Differential Gene Expression
32 Gene regulation in Eukaryotes. Lecture Outline 11/28/05 Gene regulation in eukaryotes –Chromatin remodeling –More kinds of control elements Promoters,
Methylation, Acetylation and Epigenetics
Lecture #8Date _________ n Chapter 19~ The Organization and Control of Eukaryotic Genomes.
Day 2! Chapter 15 Eukaryotic Gene Regulation Almost all the cells in an organism are genetically identical. Differences between cell types result from.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Eukaryotic DNA.
Control of Gene Expression Eukaryotes. Eukaryotic Gene Expression Some genes are expressed in all cells all the time. These so-called housekeeping genes.
Regulation of Gene Expression
 Eukaryotic Gene Expression.  Transduction  Transformation.
Introns and Exons DNA is interrupted by short sequences that are not in the final mRNA Called introns Exons = RNA kept in the final sequence.
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression Eukaryotes
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: How Eukaryotic Genomes Work and Evolve Two features of eukaryotic genomes.
Regulation of Gene Expression Chapter 18. Warm Up Explain the difference between a missense and a nonsense mutation. What is a silent mutation? QUIZ TOMORROW:
Chapter 18-Gene Expression
Eukaryotic Genomes  The Organization and Control of Eukaryotic Genomes.
(distal control elements)
AP Biology Eukaryotic Genome Control Mechanisms for Gene expression.
Topic 1: Control of Gene Expression Jamila Al-Shishani Mehran Hazheer John Ligtenberg Shobana Subramanian.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
AP Biology Discussion Notes 2/25/2015. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria (Prokaryotes)
GENE REGULATION RESULTS IN DIFFERENTIAL GENE EXPRESSION, LEADING TO CELL SPECIALIZATION Eukaryotic DNA.
AP Biology Eukaryotic Genome Control Mechanisms for Gene expression.
How is gene expression in eukaryotes accomplished ?
Regulation of Eukaryotic Gene Expression Key concepts in Expression of Eukaryotic Genomes EACH CELL IN YOUR BODY CONTAINS ALL OF THE SAME DNA ;
AP Biology Discussion Notes Monday 3/14/2016. Goals for Today Be able to describe regions of DNA and how they are important to gene expression in Bacteria.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Eukaryotic Gene Regulation
Figure LE 19-2 DNA double helix Histone tails His- tones Linker DNA (“string”) Nucleosome (“bead”) 10 nm 2 nm Histone H1 Nucleosomes (10 nm fiber)
Gene Regulation, Part 2 Lecture 15 (cont.) Fall 2008.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Regulation of Gene Expression
Eukaryotic Gene Regulation
Eukaryotic Genome Control Mechanisms for Gene Expression
Chapter 15 Regulation of Gene Expression.
Regulation of Gene Expression
Regulation of Gene Expression
Figure 18.3 trp operon Promoter Promoter Genes of operon DNA trpR trpE
Eukaryotic Genome & Gene Regulation
Gene Expression.
Regulation of Gene Expression
Regulation of Gene Activity
Chapter 15 Controls over Genes.
Regulation of Gene Expression by Eukaryotes
Regulation of Gene Expression
Regulation of Gene Expression
SGN22 Regulation of Eukaryotic Genomes (CH 15.2, 15.3)
Gene Regulation.
Eukaryote Gene Expression/Regulation
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Eukaryotic Gene Expression
Eukaryotic Genome Control Mechanisms for Gene expression
Eukaryotic gene expression is regulated at many stages
Eukaryotic Genomes: Organization, Regulation, and Evolution
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Eukaryotic Genome Control Mechanisms for Gene expression
How are genes turned on & off?
Regulation of Gene Expression
Regulation of Gene Expression
Regulation of Gene Expression
Eukaryotic Genome Control Mechanisms for Gene expression
CPET had yet to receive any Spruce Creek applications for their programs. I’m told there are several applications that went in recently. CPET wants us.
Eukaryotic Gene Regulation
Presentation transcript:

Concept 18.2: Eukaryotic gene expression can be regulated at any stage All organisms must regulate which genes are expressed at any given time In multicellular organisms gene expression is essential for cell specialization

Differential Gene Expression Almost all the cells in an organism are genetically identical Differences between cell types result from differential gene expression, the expression of different genes by cells with the same genome Errors in gene expression can lead to diseases including cancer Gene expression is regulated at many stages

Fig. 18-6 Signal NUCLEUS Chromatin Chromatin modification DNA Gene available for transcription Gene Transcription RNA Exon Primary transcript Intron RNA processing Tail Cap mRNA in nucleus Transport to cytoplasm CYTOPLASM mRNA in cytoplasm Degradation of mRNA Translation Figure 18.6 Stages in gene expression that can be regulated in eukaryotic cells Polypeptide Protein processing Active protein Degradation of protein Transport to cellular destination Cellular function

Chromatin modification Fig. 18-6a Signal NUCLEUS Chromatin Chromatin modification DNA Gene available for transcription Gene Transcription RNA Exon Primary transcript Intron Figure 18.6 Stages in gene expression that can be regulated in eukaryotic cells RNA processing Tail mRNA in nucleus Cap Transport to cytoplasm CYTOPLASM

Transport to cellular destination Fig. 18-6b CYTOPLASM mRNA in cytoplasm Translation Degradation of mRNA Polypeptide Protein processing Active protein Degradation of protein Figure 18.6 Stages in gene expression that can be regulated in eukaryotic cells Transport to cellular destination Cellular function

Regulation of Chromatin Structure Genes within highly packed heterochromatin are usually not expressed Chemical modifications to histones and DNA of chromatin influence both chromatin structure and gene expression

Histone Modifications In histone acetylation, acetyl groups are attached to positively charged lysines in histone tails This process loosens chromatin structure, thereby promoting the initiation of transcription The addition of methyl groups (methylation) can condense chromatin; the addition of phosphate groups (phosphorylation) next to a methylated amino acid can loosen chromatin Animation: DNA Packing

(a) Histone tails protrude outward from a nucleosome Fig. 18-7 Histone tails Amino acids available for chemical modification DNA double helix (a) Histone tails protrude outward from a nucleosome Figure 18.7 A simple model of histone tails and the effect of histone acetylation Unacetylated histones Acetylated histones (b) Acetylation of histone tails promotes loose chromatin structure that permits transcription

The histone code hypothesis proposes that specific combinations of modifications help determine chromatin configuration and influence transcription

DNA Methylation DNA methylation, the addition of methyl groups to certain bases in DNA, is associated with reduced transcription in some species DNA methylation can cause long-term inactivation of genes in cellular differentiation In genomic imprinting, methylation regulates expression of either the maternal or paternal alleles of certain genes at the start of development

Epigenetic Inheritance Although the chromatin modifications just discussed do not alter DNA sequence, they may be passed to future generations of cells The inheritance of traits transmitted by mechanisms not directly involving the nucleotide sequence is called epigenetic inheritance

Regulation of Transcription Initiation Chromatin-modifying enzymes provide initial control of gene expression by making a region of DNA either more or less able to bind the transcription machinery

Organization of a Typical Eukaryotic Gene Associated with most eukaryotic genes are control elements, segments of noncoding DNA that help regulate transcription by binding certain proteins Control elements and the proteins they bind are critical to the precise regulation of gene expression in different cell types

(distal control elements) Fig. 18-8-1 Poly-A signal sequence Enhancer (distal control elements) Proximal control elements Termination region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter Figure 18.8 A eukaryotic gene and its transcript

(distal control elements) Fig. 18-8-2 Poly-A signal sequence Enhancer (distal control elements) Proximal control elements Termination region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter Transcription Primary RNA transcript Exon Intron Exon Intron Exon Cleaved 3 end of primary transcript 5 Poly-A signal Figure 18.8 A eukaryotic gene and its transcript

(distal control elements) Fig. 18-8-3 Poly-A signal sequence Enhancer (distal control elements) Proximal control elements Termination region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter Transcription Primary RNA transcript Exon Intron Exon Intron Exon Cleaved 3 end of primary transcript 5 RNA processing Intron RNA Poly-A signal Figure 18.8 A eukaryotic gene and its transcript Coding segment mRNA 3 Start codon Stop codon 5 Cap 5 UTR 3 UTR Poly-A tail

The Roles of Transcription Factors To initiate transcription, eukaryotic RNA polymerase requires the assistance of proteins called transcription factors General transcription factors are essential for the transcription of all protein-coding genes In eukaryotes, high levels of transcription of particular genes depend on control elements interacting with specific transcription factors

Enhancers and Specific Transcription Factors Proximal control elements are located close to the promoter Distal control elements, groups of which are called enhancers, may be far away from a gene or even located in an intron

Animation: Initiation of Transcription An activator is a protein that binds to an enhancer and stimulates transcription of a gene Bound activators cause mediator proteins to interact with proteins at the promoter Animation: Initiation of Transcription

Promoter Activators Gene DNA Enhancer Fig. 18-9-1 Promoter Activators Gene DNA Distal control element Enhancer TATA box Figure 18.9 A model for the action of enhancers and transcription activators

Promoter Activators Gene DNA Enhancer Fig. 18-9-2 Promoter Activators Gene DNA Distal control element Enhancer TATA box General transcription factors DNA-bending protein Group of mediator proteins Figure 18.9 A model for the action of enhancers and transcription activators

Promoter Activators Gene DNA Enhancer Fig. 18-9-3 Promoter Activators Gene DNA Distal control element Enhancer TATA box General transcription factors DNA-bending protein Group of mediator proteins RNA polymerase II Figure 18.9 A model for the action of enhancers and transcription activators RNA polymerase II Transcription initiation complex RNA synthesis

Some transcription factors function as repressors, inhibiting expression of a particular gene Some activators and repressors act indirectly by influencing chromatin structure to promote or silence transcription

Enhancer Promoter Albumin gene Control elements Crystallin gene Fig. 18-10 Enhancer Promoter Albumin gene Control elements Crystallin gene LIVER CELL NUCLEUS LENS CELL NUCLEUS Available activators Available activators Albumin gene not expressed Figure 18.10 Cell type–specific transcription Albumin gene expressed Crystallin gene not expressed Crystallin gene expressed (a) Liver cell (b) Lens cell