Figure 1 Suppression of SLC22A3 and A-to-I editing

Slides:



Advertisements
Similar presentations
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Advertisements

Figure 2 Exosome composition
promotes the oncogenic activity of CagA
Figure 1 Imaging of a depressed intramucosal carcinoma
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 7 Treatment algorithm for perianal fistulizing disease
Figure 6 Injection of mesenchymal stem cells in perianal fistulas
Figure 1 Patients cured of HCV infection
Figure 2 A stage-based approach to the treatment of NAFLD
Figure 1 Gut microorganisms at the intersection of several diseases
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Figure 4 Tumour-induced neutrophil extracellular trap
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 HCV life cycle and site of action of DAAs
Figure 6 Combination therapy for HCC
Figure 4 Proinflammatory immune cells and their crosstalk in patients with IBD Figure 4 | Proinflammatory immune cells and their crosstalk in patients.
Figure 1 Definition and concept of ACLF
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Exosomes with siRNAs targeting
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Pseudorelaxation as a consequence of
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Median coverage and distribution by
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 4 Diverse molecular mechanisms of long non-coding RNAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 The role of CTLA4 and PD1 in T cell activation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 High-resolution manometry studies performed
Figure 1 Animal models of liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Figure 1 Structure and composition of the brush border
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 New therapeutic approaches in IBD therapy based on blockade of T-cell homing and retention Figure 1 | New therapeutic approaches in IBD therapy.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Bile acid-induced hepatic inflammation and carcinogenesis
Figure 2 Lifelong influences on the gut microbiome from
Figure 1 NAFLD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
2DG suppresses of lamellipodia and filopodia and causes disorganization of F-actin filaments in murine endothelial cells. 2DG suppresses of lamellipodia.
Figure 1 The spread of colorectal cancer metastases
Functions of selected IFN-inducible proteins.
Presentation transcript:

Figure 1 Suppression of SLC22A3 and A-to-I editing of SLC22A3 mRNA by ADAR2 promotes early onset and progression of familial ESCC Figure 1 | Suppression of SLC22A3 and A-to-I editing of SLC22A3 mRNA by ADAR2 promotes early onset and progression of familial ESCC. a | Unedited solute carrier family 22 member 3 (SLC22A3) inhibits the metastasis-promoting function of α-actin 4 (ACTN4). b | In patients with familial oesophageal squamous cell carcinoma (ESCC) with absence or reduced expression of unedited SLC22A3, ACTN4 crosslinks actin filaments and coverts them into actin bundles, promoting filopodia formation and metastasis. c | The edited SLC22A3 isoform is unable to interact with ACTN4 and also promotes filopodia formation and metastasis. ADAR2, adenosine deaminase acting on RNA 2 (also known as ADARB1); D, aspartate; N, asparagine. Nishikura, K. (2017) RNA editing of SLC22A3 mRNAs: causative relevance to familial ESCC? Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.102