5.5. Fundamentals of low-noise design

Slides:



Advertisements
Similar presentations
Common Emitter Amplifier. Design Rules V RE should be > 100 mV.
Advertisements

EC 2208 – Electronic Circuits Lab 1
Chapter 13 Small-Signal Modeling and Linear Amplification
RF Amplifiers Biasing of Transistors: The Base Emitter junction should be Forward biased and Base Collector junction should be reverse biased. R2 R1 Rc.
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
Noise characteristics Reference: [4] The signal-to-noise ratio is the measure for the extent to which a signal can be distinguished from the background.
1 5. SOURCES OF ERRORS Fundamentals of low-noise design 5.5. Fundamentals of low-noise design.
1 LECTURE 7. Contents 5.Sources of errors 5.1.Impedance matching Non-energetic matching Energetic matching Non-reflective matching To.
Figure 7.27 A simple but inefficient approach for differential to single-ended conversion. sedr42021_0727.jpg.
1 Announcements 1. Course assistant reception day in the next week: Monday instead of Sunday.
1 5. SOURCES OF ERRORS Fundamentals of low-noise design 5.5. Fundamentals of low-noise design.
Chapter 13 Small-Signal Modeling and Linear Amplification
Recall Last Lecture Biasing of BJT Applications of BJT
Recall Last Lecture Biasing of BJT Three types of biasing
UNIT- V Small Signal Low Frequency Transistor Amplifier Models:
Common Base and Common Collector Amplifiers
Recall Last Lecture Biasing of BJT Three types of biasing
Signal transfer circuits with FETs
Recall Last Lecture Biasing of BJT Three types of biasing
The JUNCTION FIELF EFFECT TRANSISTOR (JFET) n channel JFET
FIELD EFFECT TRANSISTOR
EMT 112 / 4 ANALOGUE ELECTRONICS
Exercise 1 In Fig. 1, run the analysis, and verify that the overall voltage gain Av=V0/Vs=-25.74, input resistance at VS = 15.44K, output resistance at.
ANALOGUE ELECTRONICS CIRCUITS I
Open book, open notes, bring a calculator
Review for Final Exam MOSFET and BJT Basis of amplifiers
SPP FIELDS Preamplifier
ANALOGUE ELECTRONICS I
Recall Lecture 17 MOSFET DC Analysis
Bipolar Junction Transistor
ENEE 303 4th Discussion.
Recall Last Lecture Introduction to BJT Amplifier
ANALOGUE ELECTRONICS I
Recall Lecture 14 Introduction to BJT Amplifier
HASMUKH GOSWAMI COLLAGE OF
M6 Which circuit will have more open-circuit voltage noise across its terminals? 1 k 2 k top bottom they are the same 3 k.
Recall Lecture 17 MOSFET DC Analysis
POWER AMPLIFIER Concept of Power Amplifier Power BJTs Power MOSFETs
Reading: Finish Chapter 12
ANALOGUE ELECTRONICS I
Recall Lecture 13 Biasing of BJT Voltage Divider Biasing Circuit.
Small-Signal Modeling and Linear Amplification
BJT transistors.
Recall Lecture 17 MOSFET DC Analysis
Lecture 07 Bipolar Junction Transistors (2)
ترانزیستور BJT دکتر سعید شیری فصل پنجم از:
HKN ECE 342 Review Session 2 Anthony Li Milan Shah.
Electronics Fundamentals
Common-Base Amplifier
ECE 333 Linear Electronics
PE-Electrical Review Course - Class 4 (Transistors)
741 Op-Amp Where we are going:.
5.5.7 Noise analysis of a CE amplifier
Recall Last Lecture Introduction to BJT Amplifier
Analog Electronics Lecture 4:Transistors.
Lecture’s content Objectives BJT – Small Signal Amplifier
Principles & Applications Small-Signal Amplifiers
Recall Lecture 17 MOSFET DC Analysis
Bipolar Junction Transistor
Recall Lecture 10 Introduction to BJT 3 modes of operation
ELECTRONIC CIRCUIT ANALYSIS
and put your whole heart into becoming good at it.
Recall Last Lecture Introduction to BJT Amplifier
Lecture 11 ANNOUNCEMENTS OUTLINE Review of BJT Amplifiers
Recall Last Lecture Introduction to BJT Amplifier
JFET Junction Field Effect Transistor.
5.5. Fundamentals of low-noise design
Analysis of Single Stage Amplifiers
Chapter 14 Single-Transistors Amplifiers
Chapter 13 Small-Signal Modeling and Linear Amplification
Presentation transcript:

5.5. Fundamentals of low-noise design 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design 5.5. Fundamentals of low-noise design hgygygygo

5.5.1. Junction-diode noise model 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.1. Junction-diode noise model 5.5.1. Junction-diode noise model ID 1) ID = IS e - IS = IF - IS VD /VT 2) idsh2 = 2 q ( IF + IS ) = 2 q ( ID + 2IS )  2 q ID rd idsh ID 3) rd  k T q ID idf idf rd 4) idsh2 = 2 q ID = 2 k T / rd rd ID edsh 5) edsh2 = (2 k T / rd ) rd 2 = 2 k T rd hgygygygo At low frequencies and ID >> IS , idn2 = 2 q ID + Kf ID f , Kf = 2 q ff Note that dynamic resistances do not generate any thermal noise since them dissipate no power, vd id  0.

5.5.2. BJT noise model icsh2 = 2 q IC ibsh2 = 2 q IB vbt2 = 4 k T rb 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model 5.5.2. BJT noise model C Noiseless rb vbt B icsh ibf ibsh E icsh2 = 2 q IC ibsh2 = 2 q IB vbt2 = 4 k T rb ibf 2 = Kf IB f hgygygygo NB: icf =0  JC < JB, ic=hfeib, (*) ict =0  RC<0.1W, ic=hfeib *Negligible surface effects compared to FETs.

vn s(t) = vst(t) + vbt(t) + [ibf (t) + ibsh(t)](RS + rb) + icsh(t) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model A. Total input noise vs RS rb vbt vbt B ip C hfe ip ic icsh vn s ? rp ro ibf ibsh 1) Total input noise vs. time, vn s(t). vn s(t) = vst(t) + vbt(t) + [ibf (t) + ibsh(t)](RS + rb) + icsh(t) RS+rb+rp hfe hgygygygo 2) Power spectral density of the total input noise, vn s2( f ).

vn s(t) = vst(t) + vbt(t) + [ibf (t) + ibsh(t)](RS + rb) + icsh(t) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model A. Total input noise vn s RS rb vbt vbt B ip C hfe ip ic vs icsh vn s ? rp ro ibf ibsh 1) Total input noise vs. time, vn s(t). vn s(t) = vst(t) + vbt(t) + [ibf (t) + ibsh(t)](RS + rb) + icsh(t) RS+rb+rp hfe hgygygygo 2) Power spectral density of the total input noise, vn s2( f ). vn s2 = 4 k T (rb + RS) + (ibf 2 + ibsh2)(RS + rb)2 + icsh2 RS+rb+rp hfe 2

vn s2 = 4 k T (rb + RS) + ibsh2 (RS + rb)2 + icsh2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model B. Optimum collector current vn s RS rb vbt B ip C hfe ip ic rp ro RS+rb+rp hfe 2 vn s2 = 4 k T (rb + RS) + ibsh2 (RS + rb)2 + icsh2 ibf = 0 hgygygygo vn s2 = 4 k T (rb + RS) + 2 q IC (RS + rb)2 hfe + 2 q IC RS+rb+hfeVT / IC 2 IC opt = hfeVT (1 + hfe )0.5 (RS + rb) Reference: [7]

vn s2 = 4 k T (rb + RS) + (ibf 2 + ibsh2)(RS + rb)2 + icsh2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model C. en- in noise model RS en rb B ip C hfe ip ic vs in rp ro RS+rb+rp hfe 2 vn s2 = 4 k T (rb + RS) + (ibf 2 + ibsh2)(RS + rb)2 + icsh2 hgygygygo en2 = vn s2 = 4 k T rb + (ibf 2 + ibsh2) rb2 + icsh2 rb+rp hfe 2 RS= 0 in2 = = ibf 2 + ibsh2 + vn s2 RS2 RS=  icsh2 hfe2

en2 = 4 k T rb + (ibf 2 + ibsh2) rb2 + icsh2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model BJT en- in noise model f >> ff rb = 100 W IC = 1 mA hfe = 100 en = 1.36 nV/Hz0.5 in = 1.8 pA/Hz0.5 en / in = 756 W RS = 756 W in RS = 1.4 nV/Hz0.5 C en in B E hgygygygo rb+rp hfe 2 en2 = 4 k T rb + (ibf 2 + ibsh2) rb2 + icsh2 icsh2 hfe2 in2 = ibf 2 + ibsh2 +

en = rb 2  1 +  1+hfe in Rs opt = 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model D. Optimum source resistance at IC opt RS en rb B ip C hfe ip ic vs rp ro in en in Rs opt = = rb 2  1 +  1+hfe IC opt IC opt hgygygygo

5.4.3. JFET noise model igsh2 = 2 q IG idt2 = 4 k T /(3/2 gm) Kf ID f 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model 5.4.3. JFET noise model D Noiseless G idf idt igsh S hgygygygo igsh2 = 2 q IG idt2 = 4 k T /(3/2 gm) Kf ID f idf 2 = NB: idsh = 0

Equivalent small-signal model 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model Equivalent small-signal model gmvgs G ig D id vgs rgs ro igsh idf idt hgygygygo

Equivalent small-signal model 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model Equivalent small-signal model gmvgs G ig D id vgs vgs rgs ro 1/gm igsh idf idt hgygygygo

Equivalent small-signal model 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model Equivalent small-signal model gmvgs G ig D vgs ro ~1/gm igsh idf idt hgygygygo

1) Total input noise vs. time, vn s(t). 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model A. Total input noise gmvgs id vs RS G ig D vgs vn s ? ro ~1/gm igsh idf idt 1) Total input noise vs. time, vn s(t). hgygygygo

vn s(t) = vst(t) + igsh(t) RS + [idf (t) + idt(t)](1/gm) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model A. Total input noise vs RS igsh Rs gmvgs G ig D id vn s ? vgs ro ~1/gm igsh idf idt 1) Total input noise vs. time, vn s(t). vn s(t) = vst(t) + igsh(t) RS + [idf (t) + idt(t)](1/gm) hgygygygo

vn s(t) = vst(t) + igsh(t) RS + [idf (t) + idt(t)](1/gm) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model A. Total input noise vn s vs RS igsh Rs gmvgs G ig D id vn s ? vgs ro ~1/gm idf idt 1) Total input noise vs. time, vn s(t). vn s(t) = vst(t) + igsh(t) RS + [idf (t) + idt(t)](1/gm) hgygygygo 2) Power spectral density of the total input noise, vn s2( f ). vn s2 = 4 k T RS + igsh2RS2 + (idf 2+ idt2)/gm2

vn s2 = 4 k T RS + igsh2RS2 + (idf 2+ idt2)/gm2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model B. en- in noise model vn s gmvgs en in RS igsh Rs G ig D id vs vn s ? vgs ro ~1/gm idf idt vn s2 = 4 k T RS + igsh2RS2 + (idf 2+ idt2)/gm2 en2 = vn s2 = (idf 2+ idt2)/gm2 RS = 0 hgygygygo in2 = = igsh2 vn s2 RS2 RS = 

en2 = (idf 2+ idt2)/gm2 in2 = igsh2 BJT JFET en- in noise model 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model BJT JFET en- in noise model f >> ff rb = 100 W IC = 1 mA hfe = 100 en = 1.36 nV/Hz0.5 in = 1.8 pA/Hz0.5 en / in = 756 W RS = 756 W in RS = 1.4 nV/Hz0.5 f >> ff Vp = 2 V IDSS = 10 mA IG = 10 pA en = 1.8 nV/Hz0.5 in = 1.8 fA/Hz0.5 en /in = 1 MW RS = 1 MW in RS = 1.8 nV/Hz0.5 D en in G S hgygygygo en2 = (idf 2+ idt2)/gm2 in2 = igsh2

5.5.4. MOSFET noise model idt2 = 4 k T /(3/2 gm) Kf ID f idf 2 = 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model 5.5.4. MOSFET noise model D Noiseless G idt idf S idt2 = 4 k T /(3/2 gm) idf 2 = Kf ID f hgygygygo NB: igsh = 0 idsh = 0

vn s(t) = vst(t) + [idf (t) + idt(t)](1/gm) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model A. Total input noise vn s gmvgs vs RS G D id vn s ? ro 1/gm idf idt 1) Total input noise vs. time, vn s(t). vn s(t) = vst(t) + [idf (t) + idt(t)](1/gm) hgygygygo 2) Power spectral density of the total input noise, vn s2( f ). vn s2 = 4 k T RS + (idf 2+ idt2)/gm2

vn s2 = 4 k T RS + (idf 2 + idt2)/gm2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model B. en- in noise model vn s gmvgs en in RS G D id vs ro 1/gm vn s2 = 4 k T RS + (idf 2 + idt2)/gm2 en2 = vn s2 = (idf 2+ idt2)/gm2 RS = 0 hgygygygo in2 = = 0 vn s2 Rs2 RS = 

MOSFET en- in noise model 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model JFET MOSFET en- in noise model f >> ff Vp = 2 V IDSS = 10 mA IG = 10 pA en = 1.8 nV/Hz0.5 in = 1.8 fA/Hz0.5 en /in = 1 MW RS = 1 MW in RS = 1.8 nV/Hz0.5 f >> ff Vp = 2 V IDSS = 10 mA en = 1.8 nV/Hz0.5 D en G S en2 = (idf 2+ idt2)/gm2 hgygygygo in = 0

5.5.5. Frequency response effect 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect 5.5.5. Frequency response effect The aim is to analyze the dependence of a transistor en and in on frequency and the operating point. VCC iC RS vs VBB Cm hgygygygo RS rb vbt vbt B C hfe ip ic vs Cp ip icsh rp ro ibf ibsh

___ ic vs hfe [1/j 2pf (Cp+Cm )]/[rp+1/j 2pf (Cp+Cm )] 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect A. Total input noise Cm RS rb B is C hfe ip ic Cp ip vs rp ro 1) Transconductance gain (icm<< hfe ip) hgygygygo ic vs hfe [1/j 2pf (Cp+Cm )]/[rp+1/j 2pf (Cp+Cm )] RS + rb+ rpII[1/j 2pf (Cp+Cm )] Ag  ___ = ____________________________________ is= 1 hfe /(RS +rb+rp ) 1+j 2pft = _____________ , t = [(RS + rb)IIrp ](Cp+Cm )

t = [(RS + rb)IIrp ](Cp+Cm ) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect Cm RS rb vbt vbt B C hfe ip ic vs Cp ip icsh vn s rp ro ibf ibsh hfe /(RS +rb+rp ) 1+j 2pft Ag = _____________ , t = [(RS + rb)IIrp ](Cp+Cm ) 2) Power spectral density of the total input noise, vn s2( f ). hgygygygo RS +rb+rp hfe 2 vn s2 = 4 k T (RS +rb) + (ibf 2 + ibsh2) (RS+rb)2 + icsh2 [1+ (2pft)2]

vn s2 = 4 k T (RS +rb) + (ibf 2 + ibsh2) (RS+rb)2 + icsh2 [1+ (2pft)2] 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect RS +rb+rp hfe 2 vn s2 = 4 k T (RS +rb) + (ibf 2 + ibsh2) (RS+rb)2 + icsh2 [1+ (2pft)2] t = [(RS + rb)IIrp ](Cp+Cm ) 3) en and in of the transistor. rb+rp hfe 2 en2 = vn s2 = 4 k T rb + (ibf 2 + ibsh2) rb2 + icsh2 [1+ (2pften)2] RS = 0 ten = (rbIIrp )(Cp+Cm ) hgygygygo vn s2 RS2 icsh2 hfe2 RS =  in2 = = ibf 2 + ibsh2 + [1+ (2pftin)2] tin = rp (Cp+Cm )

en2 = 4 k T rb+ (ibf 2 + ibsh2) rb2 + icsh2 [1+ (2pften)2] 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect B. en- in noise model for high-frequencies Cm RS en in rb B C hfe ip ic vs Cp ip rp ro rb+rp hfe 2 en2 = 4 k T rb+ (ibf 2 + ibsh2) rb2 + icsh2 [1+ (2pften)2] hgygygygo ten = (rbIIrp )(Cp+Cm ) icsh2 hfe2 in2 = ibf 2 + ibsh2 + [1+ (2pftin)2] tin = rp (Cp+Cm )

____ rb+rp 2 hfe en2 = 4 k T rb+ (ibf 2 + ibsh2) rb2 + icsh2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect C. en( f ) for different IC rb+rp hfe 2 en2 = 4 k T rb+ (ibf 2 + ibsh2) rb2 + icsh2 [1+ (2pften)2] 101 103 105 108 100 102 104 106 109 107 -40 -20 2 4 1 3 5 f, Hz IC opt = 24 mA IC = 0.1 mA en( f ) nV/Hz0.5 hgygygygo rb = 100 W hfe = 100 Cm = 1 pF Cp (1 mA) = 100 pF Ag Ag max dB ____

____ icsh2 hfe2 in2 = ibf 2 + ibsh2 + [1+ (2pftin)2] 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect D. in( f ) for different IC icsh2 hfe2 in2 = ibf 2 + ibsh2 + [1+ (2pftin)2] 2 6 4 8 IC opt = 24 mA IC = 0.1 mA in( f ) pA/Hz0.5 hgygygygo 100 101 102 103 104 105 106 107 108 109 -40 -20 rb = 100 W hfe = 100 Cm = 1 pF Cp (1 mA) = 100 pF Ag Ag max dB ____ 100 101 102 103 104 105 106 107 108 109 f, Hz

E. Noise simulation in PSPICE 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect E. Noise simulation in PSPICE V(INOISE)*1G 30 V(ONOISE)*1G/10 20 V(Out1)/V(V1:+)/10 10 hgygygygo 1.0Hz 10KHz 100MHz 1.0THz Frequency

5.5.6. Comparison of the BJT, JFET and MOSFET 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET 5.5.6. Comparison of the BJT, JFET and MOSFET rb = 40 W hfe = 500 ro =  IC = 1 mA IDSS = 2 mA Vp = 2 V ID = 1 mA vn s2 = 4 k T RS + igsh2RS2 + (idf 2+ idt2)/gm2 vn s2 = 4 k T (rb + RS) + (ibf 2 + ibsh2)(RS + rb)2 + icsh2 RS+rb+rp hfe 2 vn s2 = 4 k T RS + (idf 2+ idt2)/gm2 hgygygygo

5. SOURCES OF ERRORS. 5. 5. Fundamentals of low-noise design. 5. 5. 6 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET 100 Amplitude spectral density of the total input noise vn s as a function of RS IC opt vn s nV/Hz0.5 5 The 1/f noise is neglected. hgygygygo The JFET gate current is neglected. 1 102 103 104 105 RS, W

en at S =  4 kT RS + en 2 + 2r en in + (in RS)2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect Example: Comparison of an BJT and JFET in PSPICE RS = 100 W RS = 10 kW hgygygygo en at S =  4 kT RS + en 2 + 2r en in + (in RS)2

Conclusion: Guide for selection of the preamplifier 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET MOSFET Conclusion: Guide for selection of the preamplifier JFET IC amplifiers BJT Transformer coupling hgygygygo 1 10 100 1 k 10 k 100 k 1 M 10 M 100 M 1 G 10 G 100 G Source resistance, RS Reference: [9]

5.5.7 Noise analysis of a CE amplifier 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 5.5.7 Noise analysis of a CE amplifier VCC RC RS vs RE VBB rp io hfe ip ro rb RE RC B E C icsh vs RS ibf ibsh ip vet vbt vst vct ro   hgygygygo

Our final aim is to find and minimize the total input noise vn s. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit Our final aim is to find and minimize the total input noise vn s. rb vbt B C hfe ip ip io icsh rp vst ibf ibsh RS E vet vct vs vn s ? RE RC hgygygygo Let us first find vn s by applying superposition.

1+hfe RE/(RE +RS+rb+rp) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 1) Signal gain As for vs, vst, vbt, and vet. rb vbt B C hfe ip ip io rp vst RS E vet vs RE RC hgygygygo As  = Gs + Gs bs fwd AOL 1+AOLb _______ io vs ___ As = 1 RS+rb+rp+RE ___________ -hfe 1+hfe RE/(RE +RS+rb+rp) ____________________ + 0

1+hfe RE/(RE +RS+rb+rp) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 2) Noise gain Abf for ibf and ibsh. rb B C hfe ip ip io rp ibf ibsh RS E vs RE RC hgygygygo Abf  = Gbf + Gbf bbf fwd AOL 1+AOLb _______ io ibf ___ Abf = RS+rb+RE RS+rb+RE +rp ___________ hfe 1+hfe RE/(RE +RS+rb+rp) ____________________ + 0

1+hfe RE/(RE +RS+rb+rp) 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 3) Noise gain Acsh for icsh. rb B C hfe ip ip io icsh rp RS E vs RE RC hgygygygo Acsh  = Gcsh + Gcsh bcsh fwd AOL 1+AOLb _______ io icsh ___ Acsh = RE RE +RS+rb+rp - ___________ hfe 1+hfe RE/(RE +RS+rb+rp) ____________________ - 1

___ ___ io vct Act  = Dct 1 Act = - RC 4) Noise gain Act for vct. rb 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 4) Noise gain Act for vct. rb B C hfe ip ip rp RS E io vs vct /RC RE RC hgygygygo Act  = Dct io vct ___ Act = - 1 RC ___

__________ _______ _____ ________ _____ RSbE = RS +rb+RE 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 5) Total input noise vs. time, vn s. rb B C hfe ip ip io icsh rp RS ibf ibsh vn s E vs RE RC RSbE = RS +rb+RE hgygygygo vn s(t) = vst +vbt +vet (ibf +ibsh) Abf As __________ + icsh Acsh _______ vct Act _____ vn s2( f ) = 4kT RSbE+(ibf 2+ibsh2) RSbE2 (RSbE+rp)2 hfe2 ________ + icsh2 + 4kT 1 RC As2 _____  0

en2 = en s2 = 4 k T RbE + (ibf 2 + ibsh2) RbE 2 + icsh2 (RbE+rp)2 hfe2 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 6) en- in noise model. en in rb B C hfe ip ic ip rp RC RE E RS E vs (1+hfe) RE RbE = rb + RE hgygygygo en2 = en s2 = 4 k T RbE + (ibf 2 + ibsh2) RbE 2 + icsh2 (RbE+rp)2 hfe2 RS = 0 en s2 RS2 icsh2 hfe2 RS =  in2 = = ibf 2 + ibsh2 +

RSbE2 hfe RSbE+hfeVT /IC hfe 2 vn s2 = 4 k T RSbE + 2 q IC + 2 q IC 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 7) Minimizing CE noise. 102 -0.5 -0.4 -0.3 -0.2 -0.1 103 104 en s norm. dB hfe 0.1 0.2 0.4 0.8 1.4 1 10 hfe=104 hfe=102 hfe=103 IC / IC opt en s norm. dB 1.0 0.6 1.2 rb = 100 RS = 200 RE = 200 ibf 2 = 0 vbt2 = 4 k T rb vet2 = 4 k T RE ibsh2 = 2 q IC /b icsh2 = 2 q IC RSbE2 hfe RSbE+hfeVT /IC hfe 2 vn s2 = 4 k T RSbE + 2 q IC + 2 q IC hgygygygo IC opt = hfeVT (1 + hfe )0.5 RSbE vn s min2 = 4 k T RSbE (1 + hfe )0.5 (1 + hfe )0.5-1 Reference: [7]

Next lecture Next lecture: