Conductance through coupled quantum dots

Slides:



Advertisements
Similar presentations
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
www-f1.ijs.si/~bonca LAW3M-05 Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Thermodynamic Properties.
Www-f1.ijs.si/~bonca SNS2007 SENDAI Spectral properties of the t-J- Holstein model in the low-doping limit Spectral properties of the t-J- Holstein model.
Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
1 Effect of density gradients on magnetotransport of quantum Hall systems L. Ponomarenko.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Quantum Dots – Past, Present and Open Questions Yigal Meir Department of Physics & The Ilse Katz Center for Meso- and Nano-scale Science and Technology.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Searching for spin-liquids and non-Fermi liquids in quantum strongly correlated systems.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Transport properties: conductance and thermopower
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
Vyacheslavs (Slava) Kashcheyevs Collaboration: Christoph Karrasch, Volker Meden (RTWH Aachen U., Germany) Theresa Hecht, Andreas Weichselbaum (LMU Munich,
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Kvantna prepletenost v nano sistemih (1) motivacija (2) definicija kvantne prepletenosti (3) statični in leteči kvantni biti (4) prepletenost na zahtevo.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
2LSU(2) regime: competition between Kondo and Intermediate Valence (a numerical collaboration) George Martins Physics Department Oakland University Carlos.
A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Itinerant Ferromagnetism: mechanisms and models
Quantum entanglement, Kondo effect, and electronic transport in
Interplay of disorder and interactions
Experimental Evidences on Spin-Charge Separation
Materials Research Network – Collaborative Research: Decoherence, Correlations and Spin Effects on Nanostructured Materials. NSF-DMR Nancy Sandler1,
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Conductance of nanosystems with interaction
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Spectroscopy of ultracold bosons by periodic lattice modulations
UC Davis conference on electronic structure, June. 2009
Conductance through coupled quantum dots
Department of Physics, Fudan University, Shanghai, China
STM Differential Conductance of a Pair of Magnetic Adatoms
Phase Transitions in Quantum Triangular Ising antiferromagnets
Dynamical mean field theory: In practice
Chiral Spin States in the Pyrochlore Heisenberg Magnet
Hiroyuki Nojiri, Department of Physics, Okayama University
Tunneling through a Luttinger dot
Deformation of the Fermi surface in the
Self-Assembled Quantum Dot Molecules Studied by AFM
Presentation transcript:

Conductance through coupled quantum dots J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA

Collaborators: R. Žitko, J. Stefan Inst., Ljubljana, Slovenia A.Ramšak and T. Rejec, FMF, Physics dept., University of Ljubljana and J. Stefan Inst., Ljubljana, Slovenia

Introduction Experimental motivation Three QD’s: N-parallel QD’s: Good agreement between CPMC and GS and NRG approaches Many different regimes t’’>G: three peaks in G(d) due to 3 molecular levels t’’<G: a single peak in G(d) of width ~ U At t”<<D, in the crossover regime an unstable non-Fermi liquid (NFL) fixed point exists Two-stage Kodo effect is also followed by the NFL N-parallel QD’s: d~0: S=N/2 Kondo effect d~U/2: Quantum phase transitions

Double- and multiple- dot structures Holleitner et el., Science 297, 70 (2002) Craig et el., Science 304 , 565 (2004)

Three alternative methods: Numerical Renormalization Group using Reduced Density Matrix (NRG), Krishna-murthy, Wilkins and Wilson, PRB 21, 1003 (1980); Costi, Hewson and Zlatić, J. Phys.: Condens. Matter 6, 2519, (1994); Hofstetter, PRL 85, 1508 (2000). Projection – variational metod (GS), Schonhammer, Z. Phys. B 21, 389 (1975); PRB 13, 4336 (1976), Gunnarson and Shonhammer, PRB 31, 4185 (1985), Rejec and Ramšak, PRB 68, 035342 (2003). Constrained Path Monte Carlo method (CPMC), Zhang, Carlson and Gubernatis, PRL 74 ,3652 (1995);PRB 59, 12788 (1999).

How to obtain G from GS properties: CPMC and GS are zero-temperature methods  Ground state energy Conditions: System is a Fermi liquid ~ N-(noninteracting) sites, N ∞ ~ G0=2e2/h Rejec, Ramšak, PRB 68, 035342 (2003)

Comparison: CPMC,GS,NRG GS-variational, Hartree-Fock: Rejec, Ramšak, PRB 68, 035342 (2003) U<t; Wide-band NRG: Meir-Wingreen, PRL 68, 2512 (1992)

Comparison: CPMC,GS,NRG GS-variational, Hartree-Fock: NRG: U>>t; Narrow-band Meir-Wingreen, PRL 68, 2512 (1992)

Three coupled quantum dots Zitko, Bonca, Rejec, Ramsak, PRB 73, 153307 (2006)  MO AFM TSK Using NRG technique: Using GS – variational: NGS [1000,2000] Using CPMC: NCPMC [100,180]

Three coupled quantum dots Half-filled case! MO AFM TSK Using NRG technique: Using GS – variational: NGS [1000,2000] Using CPMC: NCPMC [100,180]

Three QDs Non-Fermi-Liquid: Cv~T lnT , cs~lnT, S(T0)=(1/2) ln 2 TK(1) AFM SU(2)spin x SU(2)izospin MO TK(2) MO AFM TSK Zitko & Bonca PRL 98, 047203 Kuzmenko et al.,Europhy.Lett. 64 218 2003 OBSERVATION Potok et al., Cond-mat/0610721 TK(1) TK(2) TD ZOOM NFL

Three QDs Non-Fermi-Liquid: Cv~T lnT , cs~ln T Zitko & Bonca PRL 98, 047203 MO TK(1) AFM AFM MO ZOOM TSK TK(2) TK(1) TK(2) TD NFL

Three coupled QDs Non-Fermi-Liquid MO AFM TSK Affletck et al. PRB 45, 7918 (1992)

Three coupled QDs Non-Fermi-Liquid MO AFM TSK

Quantum phase transitions in parallel QD’s

N - quantum dots Three different time-scales: S=N/2-1 S=N/2 Three different time-scales: S(S+1)/3 N/4 N/8 Separation of time-scales: Different temperature-regimes:

Quantum phase transitions in parallel QD’s d~0: S=N/2 Kondo effect d~U/2  Discontinuities in G Discontinuities in G  Quantum phase transitions

Quantum phase transitions in parallel QD’s

Conclusions Three QD’s in series: Good agreement between NRG, GS, and CPMC. Different phases exist: t’’>G: three peaks in G(d) due to 3 molecular levels (MO), t’’<G: a single peak in G(d) of width ~ U in the AFM regime Two-stage Kondo (TSK) regime, when t’’<TK NFL behavior is found in the crossover regime. A good candidate for the experimental observation.

Conclusions Three QD’s in series: Good agreement between NRG, GS, and CPMC. Different phases exist: t’’>G: three peaks in G(d) due to 3 molecular levels (MO), t’’<G: a single peak in G(d) of width ~ U in the AFM regime Two-stage Kondo (TSK) regime, when t’’<TK NFL behavior is found in the crossover regime. A good candidate for the experimental observation. N-parallel QD’s: d~0: S=N/2 Kondo effect d~U/2: Quantum phase transitions