EEE 161 Applied Electromagnetics

Slides:



Advertisements
Similar presentations
Differential Calculus (revisited):
Advertisements

Chapter 6 Vector analysis (벡터 해석)
VECTOR CALCULUS 1.10 GRADIENT OF A SCALAR 1.11 DIVERGENCE OF A VECTOR
PH0101 UNIT 2 LECTURE 2 Biot Savart law Ampere’s circuital law
ENTC 3331 RF Fundamentals Dr. Hugh Blanton ENTC 3331.
EEE 340Lecture Curl of a vector It is an axial vector whose magnitude is the maximum circulation of per unit area as the area tends to zero and.
EE3321 ELECTROMAGENTIC FIELD THEORY
EE2030: Electromagnetics (I)
Fundamentals of Applied Electromagnetics
Scalar-Vector Interaction for better Life …… P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Vector Analysis : Applications to.
2-7 Divergence of a Vector Field
Chapter 7 Bits of Vector Calculus. (1) Vector Magnitude and Direction Consider the vector to the right. We could determine the magnitude by determining.
Chapter 1 Vector analysis
1.1 Vector Algebra 1.2 Differential Calculus 1.3 Integral Calculus 1.4 Curvilinear Coordinate 1.5 The Dirac Delta Function 1.6 The Theory of Vector Fields.
Lecture 1eee3401 Chapter 2. Vector Analysis 2-2, 2-3, Vector Algebra (pp ) Scalar: has only magnitude (time, mass, distance) A,B Vector: has both.
Lecture 18 Today Curl of a vector filed 1.Circulation 2.Definition of Curl operator in Cartesian Coordinate 3.Vector identities involving the curl.
Scalar and Vector Fields
Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35ºC Vectors: e.g. velocity: 35mph heading south 3N force toward center.
Electromagnetic Theory Engr.Mian Shahzad Iqbal Department of Telecom Engineering University of Engineering & Technology Taxila.
ELEN 3371 Electromagnetics Fall Lecture 2: Review of Vector Calculus Instructor: Dr. Gleb V. Tcheslavski Contact:
EED 2008: Electromagnetic Theory Özgür TAMER Vectors Divergence and Stokes Theorem.
Dr. Wang Xingbo Fall , 2005 Mathematical & Mechanical Method in Mechanical Engineering.
UNIVERSITI MALAYSIA PERLIS
Review of Vector Analysis
1 Chapter 2 Vector Calculus 1.Elementary 2.Vector Product 3.Differentiation of Vectors 4.Integration of Vectors 5.Del Operator or Nabla (Symbol  ) 6.Polar.
1 April 14 Triple product 6.3 Triple products Triple scalar product: Chapter 6 Vector Analysis A B C + _.
EE 543 Theory and Principles of Remote Sensing
Section 13.4 The Cross Product. Torque Torque is a measure of how much a force acting on an object causes that object to rotate –The object rotates around.
Operators. 2 The Curl Operator This operator acts on a vector field to produce another vector field. Let be a vector field. Then the expression for the.
1. Vector Analysis 1.1 Vector Algebra Vector operations A scalar has a magnitude (mass, time, temperature, charge). A vector has a magnitude (its.
EEL 3472 Magnetostatics 1. If charges are moving with constant velocity, a static magnetic (or magnetostatic) field is produced. Thus, magnetostatic fields.
§1.2 Differential Calculus
§1.2 Differential Calculus Christopher Crawford PHY 416G
Angular Velocity: Sect Overview only. For details, see text! Consider a particle moving on arbitrary path in space: –At a given instant, it can.
Electricity and Magnetism INEL 4151 Sandra Cruz-Pol, Ph. D. ECE UPRM Mayagüez, PR.
SILVER OAK COLLEGE OF ENGG&TECH NAME:-KURALKAR PRATIK S. EN.NO: SUBJECT:- EEM GUIDED BY:- Ms. REENA PANCHAL THE STEADY STATE OF MAGNETIC.
CALCULUS III CHAPTER 5: Orthogonal curvilinear coordinates
University of Utah Introduction to Electromagnetics Lecture 14: Vectors and Coordinate Systems Dr. Cynthia Furse University of Utah Department of Electrical.
(i) Divergence Divergence, Curl and Gradient Operations
Chapter 2 Vector Calculus
Vector integration Linear integrals Vector area and surface integrals
Chapter 6 Vector Analysis
Lecture 19 Flux in Cartesian Coordinates.
ECE 305 Electromagnetic Theory
Integration in Vector Fields
MA 6251 MATHEMATICS-II . M.JAYAKUMAR ASSISTANT PROFESSOR
Soh Ping Jack, Azremi Abdullah Al-Hadi, Ruzelita Ngadiran
Chapter 18: Line Integrals and Surface Integrals
Review for: Unit 2 – Vectors
Chapter 3 Overview.
Chapter 9 Vector Calculus.
Scalars and Vectors.
Partial Derivative - Definition
Electromagnetics II.
EEE 161 Applied Electromagnetics
Scalars and Vectors.
Physics Vectors Javid.
1.4 Curvilinear Coordinates Cylindrical coordinates:
Fields and Waves I Lecture 8 K. A. Connor Y. Maréchal
Electricity and Magnetism INEL 4151
Vector Calculus for Measurements in Thermofluids
Chapter 6 Vector Analysis
G L Pollack and D R Stump Electromagnetism
Electricity and Magnetism I
VECTOR CALCULUS - Line Integrals,Curl & Gradient
Lecture 17 Today Divergence of a vector filed
Applied EM by Ulaby, Michielssen and Ravaioli
Applied Electromagnetic Waves
Fundamentals of Applied Electromagnetics
Lecture 16 Gradient in Cartesian Coordinates
Presentation transcript:

EEE 161 Applied Electromagnetics Dr. Milica Markovic 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Chapter 1 Vectors 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Scalars and Vectors Scalars quantities are defined by magnitude only: Temperature 75 deg. F Mass 75kg Vectors are defined by magnitude and direction: Wind speed 75m/h in NW direction 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Point in Cartesian Coordinate System 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Unit Vectors in Cartesian Coordinates X-direction Y-direction Z-direction Unit vectors have magnitude of 1! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Position Vector in Cartesian Coordinates Unit Vectors Components 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Example of Position Vector in Cartesian Coordinates 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics More on Vectors Magnitude – length of the vector Direction – Unit vector in the direction of vector A Magnitude = 1 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Addition of Vectors Head to Tail Rule Parallelogram Rule 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Negative Vector Negative Sign Changes Direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Subtraction of Vectors First we change direction of vector B Then we add A and –B up! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Distance Vector Can be represented by two position vectors , . Coordinates of points B and E 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Distance Vector Magnitude and Unit Vector 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Vector Multiplication Scalar or Dot Product Vector or Cross Product Scalar Triple Product Vector Triple Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Scalar Product Theta is the smaller angle between two vectors Projection of vector B in the direction of vector A (the green line) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Scalar Product in Cartesian Coordinate System 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics 5-min Practice 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Vector Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Vector Product in Cartesian Coordinate System 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Properties of Cross Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Direction of Vector Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Coordinate Systems and vector calculus Chapters 2 and 3 Coordinate Systems and vector calculus 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Cartesian Coordinates 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Length - Cart Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Surface – Cart Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Volume – Cart Coord Volume is base times height 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Position Vector in Cylindrical Coordinates Three coordinates r, θ and z. Θ= 60deg Position vector in Cylindrical Coordinates has only r and z directions! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Length –Cyl Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Surface – Cyl Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Volume Cyl Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Magnitude Transformation Relations Cyl Coord – Cart Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Unit Vectors Transformation Relations Cyl-Cart 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Cylindrical-Cartesian Coordinates 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Position Vector in Spherical Coordinates Three coordinates r, θ and Φ. Position vector in Cylindrical Coordinates is only in the R direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Length – Spherical Coord. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Surface – Spher. Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Differential Volume- Spher Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Distance Between Two Points 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Line Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Surface Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Volume Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Representation of Vector Fields Vector Fields are usually represented by arrows. The stronger the field at a point the longer the vector at the point. 2. The stronger the field in an area the higher the density of vectors in that area. All vectors have the same magnitude. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics A Del Operator Del operator is used to define Gradient Divergence Laplacian Curl. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Gradient of a Scalar Field 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Directional Derivative 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Flux of a vector Weak Strong Number of vector lines “flowing” through a surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Divergence of a Vector 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Divergence Theorem Volume integral thorough of divergence over a volume ~ this is usually easier to find. Flux through a closed surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Curl of a Vector = Rotation (Curling) of Field Direction perpendicular to vector field. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Finding the direction of curl with paddle 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Stoke’s Theorem Surface integral of the curl of A over the surface bounded by S Circulation of vector A 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Laplacian of a Scalar Divergence of Gradient Scalar field is harmonic if: (Laplace’s Equation) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Solenoidal or Divergenceless Field Field has no source or sink. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Irrotational or Potential Field 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Classification of Vector Fields 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics

Dr. Milica Markovic, EEE 161 Applied Electromagnetics Why isn’t del D equal to zero If the curl is zero is the field not spinning Issue with D If the curl and divergence are zero what’s happening Is the curl of C positive or negative Are you using the density or length notation Can we write del cross A =magnitude del magn 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics