EEE 161 Applied Electromagnetics Dr. Milica Markovic 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Chapter 1 Vectors 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Scalars and Vectors Scalars quantities are defined by magnitude only: Temperature 75 deg. F Mass 75kg Vectors are defined by magnitude and direction: Wind speed 75m/h in NW direction 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Point in Cartesian Coordinate System 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Unit Vectors in Cartesian Coordinates X-direction Y-direction Z-direction Unit vectors have magnitude of 1! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Position Vector in Cartesian Coordinates Unit Vectors Components 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Example of Position Vector in Cartesian Coordinates 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics More on Vectors Magnitude – length of the vector Direction – Unit vector in the direction of vector A Magnitude = 1 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Addition of Vectors Head to Tail Rule Parallelogram Rule 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Negative Vector Negative Sign Changes Direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Subtraction of Vectors First we change direction of vector B Then we add A and –B up! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Distance Vector Can be represented by two position vectors , . Coordinates of points B and E 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Distance Vector Magnitude and Unit Vector 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Vector Multiplication Scalar or Dot Product Vector or Cross Product Scalar Triple Product Vector Triple Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Scalar Product Theta is the smaller angle between two vectors Projection of vector B in the direction of vector A (the green line) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Scalar Product in Cartesian Coordinate System 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics 5-min Practice 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Vector Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Vector Product in Cartesian Coordinate System 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Properties of Cross Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Direction of Vector Product 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Coordinate Systems and vector calculus Chapters 2 and 3 Coordinate Systems and vector calculus 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Cartesian Coordinates 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Length - Cart Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Surface – Cart Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Volume – Cart Coord Volume is base times height 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Position Vector in Cylindrical Coordinates Three coordinates r, θ and z. Θ= 60deg Position vector in Cylindrical Coordinates has only r and z directions! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Length –Cyl Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Surface – Cyl Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Volume Cyl Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Magnitude Transformation Relations Cyl Coord – Cart Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Unit Vectors Transformation Relations Cyl-Cart 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Cylindrical-Cartesian Coordinates 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Position Vector in Spherical Coordinates Three coordinates r, θ and Φ. Position vector in Cylindrical Coordinates is only in the R direction! 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Length – Spherical Coord. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Surface – Spher. Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Differential Volume- Spher Coord 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Distance Between Two Points 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Line Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Surface Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Volume Integral 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Representation of Vector Fields Vector Fields are usually represented by arrows. The stronger the field at a point the longer the vector at the point. 2. The stronger the field in an area the higher the density of vectors in that area. All vectors have the same magnitude. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics A Del Operator Del operator is used to define Gradient Divergence Laplacian Curl. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Gradient of a Scalar Field 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Directional Derivative 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Flux of a vector Weak Strong Number of vector lines “flowing” through a surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Divergence of a Vector 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Divergence Theorem Volume integral thorough of divergence over a volume ~ this is usually easier to find. Flux through a closed surface 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Curl of a Vector = Rotation (Curling) of Field Direction perpendicular to vector field. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Finding the direction of curl with paddle 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Stoke’s Theorem Surface integral of the curl of A over the surface bounded by S Circulation of vector A 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Laplacian of a Scalar Divergence of Gradient Scalar field is harmonic if: (Laplace’s Equation) 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Solenoidal or Divergenceless Field Field has no source or sink. 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Irrotational or Potential Field 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Classification of Vector Fields 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics
Dr. Milica Markovic, EEE 161 Applied Electromagnetics Why isn’t del D equal to zero If the curl is zero is the field not spinning Issue with D If the curl and divergence are zero what’s happening Is the curl of C positive or negative Are you using the density or length notation Can we write del cross A =magnitude del magn 11/26/2018 Dr. Milica Markovic, EEE 161 Applied Electromagnetics