References YBCO: Tape, ∥ Tape-plane, SuperPower. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured at NHMFL by Valeria Braccini, Jan Jaroszynski and.

Slides:



Advertisements
Similar presentations
Applied Superconductivity Research - University of Cambridge B.A.Glowacki Bartek A. Glowacki Reader in Applied Superconductivity IRC in Superconductivity.
Advertisements

Superconductivity UK Dr. Philip Sargent, Diboride Conductors Ltd. Commercial superconductors, Cryogenics and Transformers.
E. Todesco DIPOLES FOR HIGH ENERGY LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Bordini, L. Bottura, G. De Rijk, L. Evans, P. Fessia, J.
New World Record for Superconducting Coil Performance PI: Gregory S. Boebinger, Director National High Magnetic Field Laboratory Supported by NSF (No.
1 Superconductivity - An overview of science and technology Prof Damian P. Hampshire Durham University, UK.
Superconductivity Practical Days at CERN
Bi-2212 Conductor Technology in BSCCo – Bismuth Strand and Cable Collaboration overview talk of the collaboration to working group 10 of EUCARD2 More detail.
David Larbalestier, Future Circular Colliders Workshop, Geneva CH, February 12-14, 2014 Slide 1 Better conductors for T dipoles? David Larbalestier.
References YBCO: Tape, ∥ Tape-plane, SuperPower "Turbo" Double layer (tested NHMFL 2009). Source: Aixia Xu and Jan Jaroszynski, June T depression.
Martin Wilson Lecture 1 slide 1 JUAS February 2012 NbTi manufacture vacuum melting of NbTi billets hot extrusion of the copper NbTi composite sequence.
Magnet Options for Magnetic Intervention SC Wire Characteristics (Critical Current Density: Jc) With the advent of cusp geometry for diverting ions into.
MQXF RRP® Strand for Q1/Q3 A. K. Ghosh MQXF Conductor Review November 5-6, 2014 CERN.
Towards Nb 3 Sn accelerator magnets, challenges & solutions, history & forecast Shlomo Caspi Superconducting Magnet Group Lawrence Berkeley National Laboratory.
Prospects for High Temperature Superconducting Magnets David Larbalestier National High Magnetic Field Laboratory, Florida State University, Tallahassee.
Current HTS Magnet Technology R&D Dr. Huub Weijers Magnet Science & Technology Division, National High Magnetic Field Laboratory, Tallahassee, Florida,
Development and Optimization of Bi-2212 Superconductors at Fermilab Lance Cooley Head, Superconducting Materials Department With G. Ambrosio, G. Apollinari,
Are HTS conductors up to the Magnet Builders’ vision yet? David Larbalestier On behalf of the YBCO Conductor Group (Dmytro Abraimov, Tolya Polyanskii,
Effect of Starting Materials and Present State of Cold Densified MgB 2 wires for Industrial Scale-up M.S.A. Hossain, C. Senatore, R. Flükiger, M. Tomsic,
FCC-related R&D in KEK and Japan
15 Th November 2006 CARE06 1 Nb 3 Sn conductor development in Europe for high field accelerator magnets L. Oberli Thierry Boutboul, Christian Scheuerlein,
CERN Accelerator School Superconductivity for Accelerators Case study 1 Paolo Ferracin ( ) European Organization for Nuclear Research.
Influence of Twisting and Bending on the Jc and n-value of Multifilamentary MgB2 Strands Y. Yang 1,G. Li 1, M.D. Susner 2, M. Rindfleisch 3, M.Tomsic 3,
MQXF Q1/Q3 Conductor Procurement A. K. Ghosh MQXF Conductor Review November 5-6, 2014 CERN.
Maxime Matras J. Jiang, N. C. Craig, P. Chen, F. Kametani, P. J. Lee, U. P. Trociewitz, H. Kandel, C. Scheuerlein *, E. E. Hellstrom, and D. C. Larbalestier.
D.R. Dietderich Frascati, Italy Nov , 2012 RRP-NbSn Conductor for the LHC Upgrade Magnets RRP-Nb 3 Sn Conductor for the LHC Upgrade Magnets A. K.
Conductor Review Oct 16-17, 2013LARP Strand :Specs. Procurement, Measurement- A. Ghosh1 LARP Strand: Specifications, Procurement and Measurement Plans.
CERN Accelerator School Superconductivity for Accelerators Case study 3 Paolo Ferracin ( ) European Organization for Nuclear Research.
HTS for Upgrades: overview of test requirements Amalia Ballarino, CERN Review of superconductors and magnet laboratories, A. Ballarino.
US-side contributions to the EUCARD2 collaboration Planning video meeting May 16, 2013.
The Business of Science ® Page 1 © Oxford Instruments 2012 CONFIDENTIAL Bi-2212 Round Wire Performance Continuous Improvement OST, EUcard2 CERN, June 14,
Prospects for the use of HTS in high field magnets for future accelerator facilities A. Ballarino CERN, Geneva, Switzerland.
29 th September 2009 EuCARD-WP7 HFM Conductor specification and procurement Luc OBERLI CERN, TE-MSC-SCD.
High field magnet R&D status, goals and directions Bruce Strauss August 26, 2013 Fermilab Batavia, Illinois 1.
Conductor Requirements for Magnet Designers DOE- Conductor Development Program Daniel R. Dietderich Superconducting Magnet Program Office of Science ICFA.
Quench protection of Bi-2212 magnets Tengming Shen Fermi National Accelerator Laboratory WAMHTS-3, Lyon, France, Sept 11, Work supported by U.S.
Breaking the 30 T Superconducting Magnet Barrier Gregory S. Boebinger, Florida State University, DMR Applied Superconductivity Center and Magnet.
Flükiger, W.E. Heraeus Seminar, ° Lower J c values than RRP and PIT wires at intermediate &low fields Large Sn radial composition gradient Bronze.
Superconductor Critical Current Density, A/mm²
Status of the QD0 design S. Bettoni on behalf of the whole team
MgB2 wire performance Giovanni Grasso May 20th, 2008
References YBCO: Tape,∥Tape-plane, SuperPower "Turbo" Double layer (tested NHMFL 2009). Source: Aixia Xu and Jan Jaroszynski, June T depression.
A model superconducting helical undulators wound of wind and react MgB2 and Nb3Sn multifilamentary wires Center for Superconducting & Magnetic Materials.
Yutaka Yamada (SIT, IEA-HTS OA)
G.Z. Li Y. Yang M.A. Susner M.D. Sumption E.W. Collings
Development of Nb3Sn (and Bi-2212) strands in preparation for the FCC
References YBCO: Tape, ∥ Tape-plane, SuperPower. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured by Aixia Xu at NHMFL:
Superconducting Strand for High Field Accelerators
High Temperature Superconductivity (HTS) Opportunities & Challenges;
References YBCO: Tape,∥Tape-plane, SuperPower "Turbo" Double layer (tested NHMFL 2009). Source: Aixia Xu and Jan Jaroszynski, June T depression.
CERN Conductor and Cable Development for the 11T Dipole
Conductors of HTS: Key Problems
References YBCO: Tape, ∥ Tape-plane, SuperPower. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured by Aixia Xu at NHMFL:
M.D. Sumption, C. Myers, F. Wan, M. Majoros, E.W. Collings
Mike Sumption, M. Majoros, C. Myers, and E.W. Collings
Procurement of Nb3Sn strand for coils assembled at CERN
Development of Distributed Tin processed Nb3Sn wire for FCC
References YBCO: Tape, ∥ Tape-plane, SuperPower. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured at NHMFL by Valeria Braccini, Jan Jaroszynski and.
Transverse cross- section of a Bi-2212 round wire with 7 bundles of 27 filaments manufactured by OST. This wire was heat treated at 100 atm over-pressure.
Design and Optimization of Force-Reduced Superconducting Magnets
Measurements (to be made): About the device (in development):
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
C.J. Kovacs M.D. Sumption E.W. Collings M. Majoros X. Xu X. Peng
What are the Limits of Jc in Nb3Sn Strands?
References YBCO: Tape, ∥ Tape-plane, SuperPower. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured by Aixia Xu at NHMFL:
Magnetization and decay effects in Nb3Sn, Bi:2212, and YBCO relevant to field errors Center for Superconducting & Magnetic Materials (CSMM), The Ohio State.
Development of Nb3Sn wire for high magnetic field at WST
Qingjin XU Institute of High Energy Physics (IHEP),
IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2014 (Preview 1). ASC 2014 presentation and paper 4MPo2C-03; 1st Prize in Best Student.
Assessment of stability of fully-excited Nb3Sn Rutherford cable with modified ICR at 4.2 K and 12 T using a superconducting transformer and solenoidal.
Presentation transcript:

References YBCO: Tape, ∥ Tape-plane, SuperPower. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured at NHMFL by Valeria Braccini, Jan Jaroszynski and Aixia Xu: http://dx.doi.org/10.1088/0953-2048/24/3/035001 YBCO: Tape, ⊥ Tape-plane. REBCO: SP26 tape, 50 μm substrate, 7.5%Zr. Measured at NHMFL by Valeria Braccini, Jan Jaroszynski and Aixia Xu: http://dx.doi.org/10.1088/0953-2048/24/3/035001 Bi-2223: B⊥ Tape plane: Sumitomo Electric Industries. Measured at NHMFL (D. Abraimov) unpublished Bi-2223 (Carrier Controlled): B ⊥ Tape-plane "DI" BSCCO "Carrier Controlled" Sumitomo Electric Industries (MEM'13 presented by Kazuhiko Hayashi). Bi-2223 (2012 production): B ⊥ Tape-plane "DI" BSCCO (measured at NHMFL by Jianyi Jiang and Dmytro Abraimov Oct. 2013). 2212: OST NHMFL 50 bar overpressure HT. Sample pmm170123, 0.78 mm Diam. (after HT) , OST 55x18 composite using nGimat powder. J. Jiang et al. (NHMFL), August 2017 unpublished. Nb-47Ti: 0-6 T - Boutboul et al. MT-19: Boutboul, T.; Le Naour, S.; Leroy, D.; Oberli, L.; Previtali, V.; , "Critical Current Density in Superconducting Nb-Ti Strands in the 100 mT to 11 T Applied Field Range," Applied Superconductivity, IEEE Transactions on , vol.16, no.2, pp.1184-1187, June 2006. doi: 10.1109/TASC.2006.870777 Nb-47Ti 1.8 K 5-8 T Maximal for whole LHC NbTi strand production (CERN-T. Boutboul '07) Nb-47Ti 4.2 K for the LHC insertion quadrupole strand (T. Boutboul, S. Le Naour, D. Leroy, L. Oberli, and V. Previtali, “Critical Current Density in Superconducting  Strands in the 100 mT to 11 T Applied Field Range,” IEEE Transactions on Applied Superconductivity, vol. 16, no. 2, pp. 1184–1187, Jun. 2006 http://dx.doi.org/10.1109/TASC.2006.870777) Nb-47Ti 4.22 K for 11.75 T Iseult/INUMAC MRI: Kanithi H, Blasiak D, Lajewski J, Berriaud C, Vedrine P and Gilgrass G 2014 Production Results of 11.75 Tesla Iseult/INUMAC MRI Conductor at Luvata IEEE Transactions on Applied Superconductivity 24 1–4 http://dx.doi.org/10.1109/TASC.2013.2281417 Nb3Sn (RRP®): Non-Cu Jc Internal Sn OI-ST RRP® 1.3 mm, Parrell, J.A.; Youzhu Zhang; Field, M.B.; Cisek, P.; Seung Hong; , "High field Nb3Sn conductor development at Oxford Superconducting Technology," Applied Superconductivity, IEEE Transactions on , vol.13, no.2, pp. 3470- 3473, June 2003. doi: 10.1109/TASC.2003.812360 and Nb3Sn Conductor Development for Fusion and Particle Accelerator Applications J. A. Parrell, M. B. Field, Y. Zhang, and S. Hong, AIP Conf. Proc. 711, 369 (2004), DOI:10.1063/1.1774590. Nb3Sn (High Sn Bronze): T. Miyazaki et al. MT18 - fig3, Miyazaki, T.; Kato, H.; Hase, T.; Hamada, M.; Murakami, Y.; Itoh, K.; Kiyoshi, T.; Wada, H.; , "Development of high Sn content bronze processed Nb3Sn superconducting wire for high field magnets," Applied Superconductivity, IEEE Transactions on , vol.14, no.2, pp. 975- 978, June 2004 doi: 10.1109/TASC.2004.830344 MgB2: 18 Filament - The OSU/HTRI C 2 mol% AIMI ("Advanced Internal Mg Infiltration") 33.8 Filament to strand ratio, 39.1% MgB₂ in filament. (http://dx.doi.org/10.1088/0953-2048/25/11/115023) G. Z. Li, M. D. Sumption, J. B. Zwayer, M. A. Susner, M. A. Rindfleisch, C. J. Thong, M. J. Tomsic, and E. W. Collings, “Effects of carbon concentration and filament number on advanced internal Mg infiltration-processed MgB 2 strands,” Superconductor Science and Technology, vol. 26, no. 9, p. 095007, Sep. 2013. Links to ASC, MT and ICMC Proceedings can be found on the conferences page.