Advanced Functional Programming Tim Sheard Oregon Graduate Institute of Science & Technology Lecture 5: Algorithms for Hindley-Milner type Inference
Type inference and Hindley-Milner How is type inference done? Structural recursion over a term. Uses an environment which maps variables to their types Returns a computation in a monad type infer :: Exp -> Env -> M Type What does the Env look like partial function from Name -> Scheme Scheme is an encoding of a Hindley-Milner polymorphic type. All the forall's to the outermost position. Often implemented as a list
The Inference Monad newtype IM a x = Ck (Int -> (ST a (x, String, Int))) instance Functor (IM a) where fmap f (Ck g) = Ck h where h n = do { (x, out, n') <- g n ; return (f x,out,n') } instance Monad (IM a) where return x = Ck h where h n = return (x, "", n) (Ck g) >>= f = Ck ff where ff n = do { (a, out1, n1) <- g n ; let (Ck h) = f a ; (y, out2, n2) <- h n1 ; return (y, out1 ++ out2, n2)}
Interface to IM readVar :: STRef a b -> IM a b readVar ref = Ck f where f n = do { z <- readSTRef ref ; return (z, "", n) } newVar :: x -> IM a (STRef a x) newVar init = Ck f where f n = do { z <- newSTRef init writeVar :: STRef a b -> b -> IM a () writeVar ref value = Ck f where f n = do { z <- writeSTRef ref value nextN :: IM a Int nextN = Ck f where f n = return (n, "", n+1)
Escaping the monad Since the monad is a variant of the state monad we need to escape from it: runIM :: (forall a . IM a c) -> Int -> (c,String,Int) runIM w n = let (Ck f) = w in runST (f n) force :: (forall a . IM a c) -> c force w = case (runIM w) 0 of (x, _, _) -> x Note the use of Rank 2 polymorphism
Representing Types data Type a = Tunit | Tarrow (Type a) (Type a) | Ttuple [ Type a ] | Tdata String [ Type a ] | Tgen Int | Tvar (STRef a (Maybe (Type a))) data Scheme a = Sch [Int] (Type a) forall a,b . (a,b) = Sch [1,2] (Ttuple [ Tgen 1, Tgen 2 ])
Handling Errors class Error a b where occursCk :: Type a -> Type a -> IM a b nameMtch:: Type a -> Type a -> IM a b shapeMtch:: Type a -> Type a -> IM a b tupleLenMtch:: Type a -> Type a -> IM a b
Unification unify tA tB = do { t1 <- prune1 tA ; t2 <- prune1 tB unify :: Error a [String] => Type a -> Type a -> IM a [String] unify tA tB = do { t1 <- prune1 tA ; t2 <- prune1 tB ; case (t1,t2) of (Tvar r1,Tvar r2) -> -- Both are Variables if r1==r2 then return [] else do { writeVar r1 (Just t2); return []} (Tvar r1,_) -> -- One is a Variable do { b <- occursIn1 r1 t2 ; if b then occursCk t1 t2 else do { writeVar r1 (Just t2) ; return [] } } (_,Tvar r2) -> unify t2 t1
Unification 2 ; case (t1,t2) of . . . (Tgen s, Tgen t) -> if s==t then return [] else (nameMtch t1 t2) (Tarrow x y,Tarrow m n) -> do { cs1 <- unify x m ; cs2 <- unify y n ; return (cs1 ++ cs2) } (Ttuple xs, Ttuple ys) -> if (length xs) == (length ys) then do { xss <- sequence (fmap (uncurry unify) (zip xs ys)) ; return (concat xss) } else tupleLenMtch t1 t2 (_,_) -> (shapeMtch t1 t2)
Operations on Types prune1 (typ @ (Tvar ref)) = do { m <- readVar ref ; case m of Just t -> do { newt <- prune1 t ; writeVar ref (Just newt) ; return newt } Nothing -> return typ prune1 typ = return typ Tvar(Just _ ) Tuple[ X, Y] Tvar(Just _ ) Tuple[ X, Y]
Does a ref occur in a type? occursIn1 r t = do { t2 <- prune1 t ; case t2 of Tunit -> return False Tarrow x y -> do { b1 <- occursIn1 r x ; b2 <- occursIn1 r y ; return ((||) b1 b2 ) } Ttuple xs -> do { bs <- sequence (map (occursIn1 r) xs) ; return (or bs)} Tdata name xs -> Tgen s -> return False Tvar z -> return(r == z) }
Generalizing We need to look through a type, and replace all generalizable TVar's with consistent Tgen's A TVar is generalizable if its isn't bound to something. I.e. Tvar ref and do { x <- readVar ref ; case x of Nothing -> .... and its not mentioned in the outer environment. Keep a list of pairs, pairing known generalizable Tvar's and their unique Int
Finding unique Ints genVar :: Tref a -> [(Tref a,Int)] -> IM a (Type a,[(Tref a,Int)]) genVar r [] = do { n <- nextN ; return (Tgen n,[(r,n)]) } genVar r (ps @ ((p @ (r1,n)):more)) = if r1==r then return (Tgen n,ps) else do { (t,ps2) <- genVar r more ; return (t,p:ps2)} Note we return the new extended list as well as the type (Tgen n) that corresponds to the Tvar reference
Putting it all together gen :: (Tref a -> IM a Bool) -> Type a -> [(Tref a,Int)] -> IM a (Type a,[(Tref a,Int)]) gen pred t pairs = do { t1 <- prune1 t ; case t1 of Tvar r -> do { b <- pred r ; if b then genVar r pairs else return(t1,pairs)} Tgen n -> return(t1,pairs) Tunit -> return(t1,pairs) Tarrow x y -> do { (x',p1) <- gen pred x pairs ; (y',p2) <- gen pred y p1 ; return (Tarrow x' y',p2)} Ttuple ts -> do { (ts',p) <- thread pred ts pairs ; return (Ttuple ts',p) } Tdata c ts -> do { (ts',p) <- thread pred ts pairs ; return (Tdata c ts',p) } }
Finishing up generalization thread p [] pairs = return ([],pairs) thread p (t:ts) pairs = do { (t',p1) <- gen p t pairs ; (ts',p2) <- thread p ts p1 ; return(t':ts',p2) } generalize :: (Tref a -> IM a Bool) -> Type a -> IM a (Scheme a) generalize p t = do { (t',pairs) <- gen p t [] ; return(Sch (map snd pairs) t')
Instantiation g (x::a) = let f :: forall b . b -> (a,b) freshVar = do { r <- newVar Nothing ; return (Tvar r) } -- Sch [1] (Tarrow (Tgen 1) (Ttuple [Tvar a, Tgen 1])) instantiate (Sch ns t) = do { ts <- sequence(map (\ _ -> freshVar) ns) ; let sub = zip ns ts ; subGen sub t } g (x::a) = let f :: forall b . b -> (a,b) f = \ y -> (x,y) w1 = f "z" w2 = f True in (x,f)
Substituting (Tgen n) for T subGen sub t = do { t2 <- prune1 t ; case t2 of Tunit -> return Tunit Tarrow x y -> do { b1 <- subGen sub x ; b2 <- subGen sub y ; return (Tarrow b1 b2)} Ttuple xs -> do { bs <- sequence (map (subGen sub) xs) ; return (Ttuple bs)} Tdata name xs -> ; return (Tdata name bs)} Tgen s -> return(find s sub) Tvar z -> return(Tvar z) }
Note the pattern Before we do a case analysis we always prune. gen pred t pairs = do { t1 <- prune1 t ; case t1 of . . . occursIn1 r t = do { t2 <- prune1 t ; case t2 of . . . unify tA tB = do { t1 <- prune1 tA ; t2 <- prune1 tB ; case (t1,t2) of . . . subGen sub t = ; case t2 of Tvar(Just _ ) Tuple[ X, Y] Tvar(Just _ ) Tuple[ X, Y]
Type inference Representing programs data Exp = App Exp Exp | Abs String Exp | Var String | Tuple [ Exp] | Const Int | Let String Exp Exp
infer :: Error a [String] => Exp -> [(String,Scheme a)] -> IM a (Type a) infer e env = case e of Var s -> instantiate (find s env) App f x -> do { ftyp <- infer f env ; xtyp <- infer x env ; result <- freshVar ; unify (Tarrow xtyp result) ftyp ; return result } Abs x e -> do { xtyp <- freshVar ; etyp <- infer e ((x,Sch [] xtyp):env) ; return(Tarrow xtyp etyp)
Let inference Let bound variables can be given polymorphic types if their type doesn't mention any type variables in an outer scope. generic :: [(n,Scheme a)] -> Tref a -> IM a Bool generic [] r = return True generic ((name,Sch _ typ):more) r = do { b <- occursIn1 r typ ; if b then return False else generic more r } g x = let f = ((\ y -> (x,y)) :: C1 -> (A1,C1)) w1 = f "z" w2 = f True in (x,f) {g::E1, x::A1, f::B1}
inference continued infer e env = case e of . . . Tuple es -> do { ts' <- sequence(map (\ e -> infer e env) es) ; return(Ttuple ts') } Const n -> return(Tdata "Int" []) Let x e b -> do { xtyp <- freshVar ; etyp <- infer e ((x,Sch [] xtyp):env) ; unify xtyp etyp ; schm <- generalize (generic env) etyp ; btyp <- infer b ((x,schm):env) ; return btyp
Poly morphic recursion f :: [a] -> Int f [] = 0 f (x:xs) = 1 + f xs + (f (map g xs)) where g x = [x]