The Three-dimensional Potential Energy

Slides:



Advertisements
Similar presentations
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Advertisements

A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
Conical Intersections between Vibrationally Adiabatic Surfaces in Methanol Mahesh B. Dawadi and David S. Perry Department of Chemistry, The University.
The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,
Chemistry 6440 / 7440 Vibrational Frequency Calculations.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Ab Initio Calculations of the Ground Electronic States of the C 3 Ar and C 3 Ne Complexes Yi-Ren Chen, Yi-Jen Wang, and Yen-Chu Hsu Institute of Atomic.
Progress Towards the Accurate Calculation of Anharmonic Vibrational States of Fluxional Molecules and Clusters Without a Potential Energy Surface Andrew.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
Spectroscopy of He-, Ne-, and Ar - C 2 D 2 complexes Mojtaba Rezaei, Nasser Moazzen-Ahmadi Department of Physics and Astronomy University of Calgary A.R.W.
A Practical Procedure for ab initio Determination of Vibrational Spectroscopic Constants, Resonances, and Polyads William F. Polik Hope College, Holland,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Tutorial – 4 1) Calculate the moment of inertia (I) and bond length (r) from microwave spectrum of CO. First line (J = 0 to J=1 transition) in the rotation.
Copyright All rights reserved. June 25, 2015ISMS, 2015
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
An analytical potential for the for the a 3  + state of KLi, (derived from observations of the upper vibrational levels only) Houssam Salami, Amanda Ross,
An Analytic 3-Dimensional Potential Energy Surface for CO 2 -He and Its Predicted Infrared Spectrum Hui Li, Robert J. Le Roy υ International Symposium.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
The Rotation-Vibration Structure of the SO 2 C̃ 1 B 2 State Derived from a New Internal Coordinate Force Field Jun Jiang, Barratt Park, and Robert Field.
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
THE ANALYSIS OF 2ν3 BAND OF HTO
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
Semiempirical modelling of helium cluster cations
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
International Symposium on Molecular Spectroscopy
Ab initio calculation on He3+ of interest for semiempirical modelling of Hen+ Ivana Paidarová a), Rudolf Polák a), František Karlický b), Daniel Hrivňák.
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Jacob T. Stewart and Bradley M
Britta A. Johnson and Edwin L. Sibert III
Theoretical Prediction of the Rotational Constants for
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
International Symposium on Molecular Spectroscopy
Variation of CH Stretch Frequencies with CH4 Orientation in the CH4--F- Complex: Multiple Resonances as Vibrational Conical Intersections Bishnu P Thapaliya,
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
Yi-Ren Chen and Yen-Chu Hsu Institute of Atomic and Molecular Sciences
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
JILA F. Dong1, M. A. Roberts, R. S. Walters and D. J. Nesbitt
Fourier transform microwave spectra of n-butanol and isobutanol
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
Full dimensional rovibrational variational calculations of the S1 state of C2H2 -or- “less is more less” P. Bryan Changala JILA, National Institute.
Observation of Trans-Ethanol and
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Wafaa Fawzy Murray State University (MSU)
Spectroscopy, Structure, and Ionization Energy of BeOBe
Coupled channel analysis of the D 1P~ d 3P complex in NaK : potential energy curves and spin-orbit functions Anastasia Drozdova1,2 Amanda Ross1, Andrey.
Harmonic Oscillator.
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Sara E. Ray and Anne B. McCoy
Presentation transcript:

The Three-dimensional Potential Energy Surface of Ar-CO Yoshihiro Sumiyoshi1,  Yasuki Endo2 1. Faculty of Science and Technology, Gunma University 2. Graduate School of Arts and Sciences, University of Tokyo

Previous studies on Ar-CO T. Ogata, et al., J. Chem. Phys. 98, 9399 (1993) W. Jaeger, et al., J. Chem. Phys. 102, 3578 (1995) V. N. Markov, et al., Rev. Sci. Inst. 69, 4061 (1998) M. Hepp, et al., J. Mol. Spectrosc. 176, 58 (1996) M. Hepp, et al., Mol. Phys. 92, 229 (1997) M. Hepp, et al., J. Mol. Spectrosc. 183, 295 (1997) R. Gendriesch, et al., J. Mol. Spectrosc. 196, 139 (1999) L. A. Surin, et al., Rev. Sci. Inst. 72, 2535 (2001) D. G. Melnik, et al., J. Chem. Phys. 114, 6100 (2001) MW & mmW R. W. McKellar, J. Mol. Spectrosc. 153, 475 (1992) Y. Xu, et al., Mol. Phys. 88, 859 (1996) Y. Xu, et al., Mol. Phys. 87, 1071 (1996) S. Koenig, et al., Mol. Phys. 91, 265 (1997) A. R. W. McKellar, Mol. Phys. 98, 111 (2000) I. Scheele, et al., Mol. Phys. 99, 197 (2001) I. Scheele, et al., Mol. Phys. 99, 205 (2001) I. Scheele, et al., Mol. Phys. 101, 1423 (2003) IR R. R. Toczylowski , et al., J. Chem. Phys. 112, 4604 (2000) CCSD(T) / aug-cc-pVTZ T. B. Pederson, et al., J. Chem. Phys. 117, 6562 (2002) CCSD(T) / aug-cc-pVQZ Ab initio

Previous studies on Ar-CO L. H. Coudert, et al., J. Chem. Phys. 121, 4691 (2004) M. Havenith and G. W. Schwaab, Z. Phys. Chem. 219, 1053 (2005) 2D-IPES (fitting) Attacking a Small Beast: Ar-CO, a Prototype for Intermolecular Forces “No satisfactory analysis has been carried out.” Intermolecular potential energy surface (3D-IPES) by directly fitting all available transition frequencies

Coupling Scheme C r q K R G Ar O j L J G : The center of mass of CO R : Distance between G and Rg. r : CO bond length. q : Angle between R and r.

Observed ro-vibrational levels MW & mmW : ~ 200 lines IR : ~ 830 lines 80 (0, 6, 6)* (vvdW, j, K) 60 (3, 1, 0)* (0, 5, 5) Energy / cm-1 40 (0, 4, 4) (1, 2, 0)* (0, 3, 2)* (1, 1, 0)* (0, 3, 3) (1, 1, 1)* 20 (0, 2, 1) (1, 0, 0) (0, 1, 0) (0, 2, 2) (vvdW, j, K) vco = 0, 1 (vvdW, j, K)* vco = 1 (vvdW, j, K)** vco = 0, 1, 2 (0, 1, 1)** (0, 0, 0)**

upper lower n0 N weight Ar-12CO mmW: 5 IR: 25 Ar-13CO (vCO, vvdW, j, K) (vCO, vvdW, j, K) n0 N weight Ar-12CO mmW: 5 * * * Pederson, et al., J. Chem. Phys. 117, 6562 (2002) * * IR: 25 Ar-13CO

Ab initio calculations An initial 3-D potential by ab initio calculations CCSD(T) -F12b/ aug-cc-pV5Z 2450 points R : 3.3 ~ 15.0 Å r : 1.00 ~ 1.35 Å q : 0 ~ 180 ° Molpro 2010.1

Total Hamiltonian ~3D analysis ~ Htotal = HArCO + HCO

Potential terms ~3D IPES ~ Short range term Legendre polynomial Asymptotic term A total of 46 parameters are used to fit the ab initio potential surfaces s : 0.32 cm-1

3 Dimensional Potential /13C q ’ G’ r’ R’ V(R’, r’, q ’) 3D potential surfaces IR data 12C r r’ 12CO 13CO Ar-12CO Ar-13CO MW data r G q Rg R O V(R, r, q )

Eigenvalue calculation Total function: 1. Rotation: Rotation matrix jmax = 18 2. Vibration: anharmonic/harmonic oscillator vdW stretching vibration vmax = 15/40 CO vibration vsmax = 7/35 Hamiltonian matrices to be diagonalized: ≈ 20000 Discrete variable representation(DVR)

Least-squares fitting Direct fit of observed transition frequencies MW data (12 lines) : 1.0 mmW data (195 lines) : 1.0 x 10-2 ~ 1.0 x 10-4 IR data (831 lines) : 1.0 x 10-6 ~ 1.0 x 10-8 Total : 1038 lines: 20 potential parameters were optimized rms(MW) : 32 kHz (Ar-12CO / 13CO) rms(mmW) : 970 kHz rms(IR) : 0.0026 cm-1

PES of Ar-CO O Ar C C O Ar O Ar C R / Å q /deg.

Potential curve fitted CCSD(T)-F12/ AV5Z Rmin(q) CCSD(T)/ AVQZ(33211) Re = 3.72 Å Dn (J = 2-1) 0.9% R / Å Re = 3.68 Å at = 85° C O Ar q /deg. O Ar C The present ab initio PES predicts transition frequency for J = 2-1 at 8284 MHz within 0.026%.

Potential curve fitted CCSD(T)-F12/ AV5Z V(Re, q, q = 0) CCSD(T)/ AVQZ(33211) De = 102 cm-1 De = 107 cm-1 D0 = 83 cm-1 De = 108 cm-1 E / cm-1 q /deg.

Observed ro-vibrational levels IR transition (vCO, vvdW, j, K) (1, 0, 6, 6) (0, 0, 5, 5) Rotational state with J’ = 14 has been observed J’ 14 85 Present: 84.5 cm-1 13 D0 (vCO = 1) 80 CCSD(T) / AVQZ(33211): 79 cm-1 9 6

Comparison of Energy levels in VCO = 1

Bending excited states with vCO = 1 Y2 > 5% (4% step) J = 1(-) (1, 1, 1) Bending excited states with vCO = 1 R / Å E / cm-1 +40 (vvdW, j, K) (1, 2, 0) (0, 3, 2) (1, 1, 0) (1, 1, 1) +20 (1, 1, 0) (0, 2, 1) (0, 1, 0) 3141.6 R / Å q /deg.

Summary All the spectroscopic data (1038 lines), MW(Ar-12CO, Ar-13CO), mmW, and IR(vCO=1, 2), have been fitted simultaneously, and the 3D-IPES has been determined. Unobserved states have been predicted. (vCO, vvdW, j, K) (1, 1, 2, 1) Higher by 35 cm-1 than the state (1, 0, 0, 0) (1, 1, 2, 2)