MicroSystems & MicroFluidics Lab

Slides:



Advertisements
Similar presentations
MICROELECTROMECHANICAL SYSTEMS ( MEMS )
Advertisements

Semiconductor Device Physics
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
USP UPENN LSI Fabrication of Silicon Probes for Biosensors Dr. Marcelo Bariatto A. Fontes (Post-Doc) LSI / USP Dr. Rogério Furlan LSI / USP Dr. Jorge J.
Presenter: Prof. David Garmire Agenda Minutes 1. Administrivia10 2. Photoresist and Patterning10 3. Deposition of Material25 4. Etching of Material25 5.
Bulk micromachining  Explain the differences between isotropic and anisotropic etching  Explain the differences between wet and dry etching techniques.
Chapter 10 Etching Introduction to etching.
Wet Bulk Micromachining Dr. Marc Madou, Fall 2012 UCI Class 8
Lec. (4,5) Miller Indices Z X Y (100).
The silicon substrate and adding to it—Part 1  Explain how single crystalline Si wafers are made  Describe the crystalline structure of Si  Find the.
Section 3: Etching Jaeger Chapter 2 Reader.
Overview of Nanofabrication Techniques Experimental Methods Club Monday, July 7, 2014 Evan Miyazono.
Pattern transfer by etching or lift-off processes
Bulk MEMS 2014, Part 1 Types of MEMS Bulk MEMS: anisotropic wet or DRIE of bulk silicon SOI MEMS: DRIE or wet etching of SOI.
1 Microfabrication Technologies Luiz Otávio Saraiva Ferreira LNLS
SOIMUMPs Process Flow Keith Miller Foundry Process Engineer.
Bulk MEMS 2013, Part 2
MEMs Fabrication Alek Mintz 22 April 2015 Abstract
MEMS Fabrication By Thomas Szychowski.
1 ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 18: Introduction to MEMS Dr. Li Shi Department of Mechanical Engineering.
Top Down Method Etch Processes
MEMS Class 2 Materials for MEMS Mohammad Kilani. MEMS Materials Silicon-Compatible Material System  Silicon  Silicon Oxide and Nitride  Thin Metal.
Why do we put the micro in microelectronics?. Why Micro? 1.Lower Energy and Resources for Fabrication 2.Large Arrays 3.Minimally Invasive 4.Disposable.
Bulk Silicon Micromachining
Wet Bulk Micromachining –
Chapter Extra-2 Micro-fabrication process
ES050 – Introductory Engineering Design and Innovation Studio 1 ECE Case Study Accelerometers in Interface Design – Part II Prof. Ken McIsaac
ISAT 436 Micro-/Nanofabrication and Applications
Top Down Manufacturing
Top Down Method Etch Processes
1 3 MEMS FABRICATION Ken Gilleo PhD ET-Trends LLC 24%
Fabrication of Microelectronic Devices
Lecture 1 OUTLINE Semiconductor Fundamentals – General material properties – Crystal structure – Crystallographic notation – Electrons and holes Reading:
MEMS Fabrication: Process Flows and Bulk Silicon Etching
MEMS devices: How do we make them? Sandia MEMS Gear chain Hinge Gear within a gear A mechanism.
 Refers to techniques for fabrication of 3D structures on the micrometer scale  Most methods use silicon as substrate material  Some of process involved.
Fabrication Process for Micro Structures
Micromachining 기술 I 서강대학교 기계공학과 최범규 (Choi, Bumkyoo) (Silicon Based)
MEMS 2016 Part 2 (Chapters 29 & 30)
(Chapters 29 & 30; good to refresh 20 & 21, too)
Micro Electro Mechanical Systems (MEMS) Device Fabrication
Etching Chapters 11, 20, 21 (we will return to this topic in MEMS)
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
CHAPTER 13 Fabrication of Microelectronic and Micromechanical Devices
Lecture 3 Fundamentals of Multiscale Fabrication
New Mask and vendor for 3D detectors
Process integration 1: cleaning, sheet resistance and resistors, thermal budget, front end
서강대학교 기계공학과 최범규(Choi, Bumkyoo)
Etching Processes for Microsystems Fabrication
Lecture 1 OUTLINE Important Quantities Semiconductor Fundamentals
Microelectronic Fabrication
Fabrication By Thomas Szychowski.
Semiconductor Fundamentals
Process Flow for ESS5810 AMSF
MEMS, Fabrication Cody Laudenbach.
Concepts of Crystal Geometry
Etch Dry and Wet Etches.
Lecture 1 OUTLINE Important Quantities Semiconductor Fundamentals
MEMS TECHNOLOGY By Rogerio Furlan.
Etch-Stop Techniques : (1) Doping Selective Etching (DSE)
Process flow part 2 Develop a basic-level process flow for creating a simple MEMS device State and explain the principles involved in attaining good mask.
Memscap - A publicly traded MEMS company
CRYSTAL STRUCTURE ANALYSIS
Lecture 1 OUTLINE Semiconductor Fundamentals
MicroElectroMechanical Systems
SILICON MICROMACHINING
BONDING The construction of any complicated mechanical device requires not only the machining of individual components but also the assembly of components.
서강대학교 기계공학과 최범규(Choi, Bumkyoo)
Crystalline Solids (고체의 결정구조)
Presentation transcript:

MicroSystems & MicroFluidics Lab National Tsing Hua University ESS ESS 5810 Lecture 10 體型微加工製程技術 曾繁根 助理教授 國立清華大學工程與系統科學系 MicroSystems & MicroFluidics Lab Prof. Fan-Gang Tseng

矽體型微加工技術 Introduction Isotropic Wet Etching Silicon Crystal Orientation Anisotropic wet etching Etching Stop Possible Shapes

1. 矽體型微加工技術概論 Pressure sensor l  Definition of Bulk Micromachining:Based on the device shaping by etching a bulk substrate. l  Materials used for bulk micromachining: single crystal silicon, gallium arsenide, quartz, etc… Pressure sensor

1. 矽體型微加工技術概論 Silicon as A Mechanical Material: Major difference: Silicon yields by fracturing (at room temp) while metals usually yield by deforming inelastically—chipping, cleave along crystallographic planes.

2. Silicon Isotropic Wet Etching-1 HNA system (HNO3+HF), etching rate can be 50 μm/min: a. Hole injection: b. Oxide formation: c. Oxide etching: Total reaction:

2. Isotropic Wet Etching-2 Effects: High HF Low HNO3: oxidation limit, rough surface High HNO3 Low HF: etching limit, smooth surface SZE

2. Isotropic Wet Etching-3 Mask materials

3. Silicon Crystal Orientation

Miller index 1. Take the intercepts with three axes, say a, b, c 2. Take the reciprocal of these three integers, multiplied by smallest common denominator, get miller indices (d,e,f)

Wafer flat <111>

4-1. Anisotropic wet etching (on <100> wafer) Concentration ↑: etching rate↓ selectivity ↑ surface roughness↓ Temperature ↑: etching rate ↑ selectivity ↓ surface roughness↑

4-1. Anisotropic wet etching (on <100> wafer)

Comparison (100) wafer <110> direction (110) wafer <110>

Undercut on convex corner Concave and convex corner: The surface revealed in concave corner is the slowest one, however, it is the fastest one in convex cases

Corner compensation-1 KOH B Minimum=1.6 B For EDP For KOH

Corner compensation-2 EDP KOH (100)>(110)>(111) (110)>(100)>(111)

Method to get 90° and 45° wall on (100) silicon wafer by bulk micromachining EDP (100)>(110)>(111) KOH (110)>(100)>(111)

Crystal orientation finding on (100) wafer <110>Wafer flat provide 2-5° accuracy Long slot give around 1 ° accuracy Circular squares along <110> side give 0.1 ° accuracy (80 m pitch) Tan-1(80/45000) =0.1 ° Steckenborn, A et al, Micro System Technologies 91

Crystal orientation finding on (100) wafer (<110> direction) F. G. Tseng, unreleased figures <110> direction

Possible shapes on (100) silicon wafer

4-2. Anisotropic wet etching (on <110> wafer) (110) <111>

4-2. Anisotropic wet etching (on <110> wafer)

4-2. Anisotropic wet etching (on <110> wafer)

4-2. Anisotropic wet etching (on <110> wafer)

Crystal orientation finding on (110) wafer <111>Wafer flat provide 2-5° accuracy Long slot give around 1 ° accuracy Circular squares along <100> side give 0.06 ° accuracy (35 m pitch) F. G. Tseng, K. C. Chang, ASME IMECE MEMS’01, JMM. <111> <110> <100> R=48.9mm (110) wafer 55 Alignment Circles r R  x 109.5°

Crystal orientation finding on (110) wafer (<100> direction) -1 1 30 μm 2 4 5 <100> direction Center hexagon 30 μm -1 1 2 3 4 5

Possible Shape on (110) silicon wafer

4-3. Anisotropic wet etching (on <111> wafer)

5. Etching Stop-1 High Boron Concentration:

5. Etching Stop-2 Electrochemical etch stop:

6. Bulk Micromachining by Dry Etching Deep silicon RIE:

7. 正八面體晶體輔助工具 Fan-Gang Tseng ESS 5850 <110> <111> <100> 7. 正八面體晶體輔助工具