Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4  Jie Ge, Yanfa Yan  iScience 

Slides:



Advertisements
Similar presentations
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Heon-Young Lee a, Seung-Joo Lee b, Sung-Man Lee a a Department of Advanced.
Advertisements

PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
M.S. Hossain, N.A. Khan, M. Akhtaruzzaman, A. R. M. Alamoud and N. Amin Solar Energy Research Institute (SERI) Universiti Kebangsaan Malaysia (UKM) Selangor,
Macroscopic versus Microscopic uniformity in Cu 2 ZnSnSe 4 absorber layers: the role of temperature and selenium supply Mehrnoush Mokhtarimehr Jose Marquez.
Date of download: 6/7/2016 Copyright © 2016 SPIE. All rights reserved. X-ray diffraction (XRD) data and Raman spectra of TiO2 NS (a) and (c) and TiO2 NR.
Characterization of mixed films
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: A New Approach for Fabricating Low Cost DSSC by Using Carbon-Ink From Inkjet Printer.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
M. Dhanasekar, Dr. S. Venkataprasad Bhat*
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Pulsed laser deposition (PLD) of a CZTS- absorber for thin solar cells with up to 5.2 % efficiency A. Cazzaniga1, A. Crovetto2, R. B. Ettlinger1,
Volume 1, Issue 2, Pages (October 2017)
Shafi Ullah, Miguel Mollar, Bernabé Mari
Volume 1, Issue 2, Pages (October 2017)
Volume 2, Issue 3, Pages (March 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Volume 3, Issue 2, Pages (August 2017)
Prussian Blue Analogs for Rechargeable Batteries
On the Electrolytic Stability of Iron-Nickel Oxides
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
Volume 7, Pages (September 2018)
Volume 8, Pages (October 2018)
Zhizhang Yuan, Yinqi Duan, Tao Liu, Huamin Zhang, Xianfeng Li
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Mesoporous Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage  Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili.
Volume 1, Issue 1, Pages (September 2017)
Volume 26, Issue 7, Pages (April 2016)
A Barbeque-Analog Route to Carbonize Moldy Bread for Efficient Steam Generation  Yaoxin Zhang, Sai Kishore Ravi, Jayraj Vinubhai Vaghasiya, Swee Ching.
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 2, Issue 1, Pages (January 2018)
Kun Zhao, Bangsen Ouyang, Ya Yang
A Flexible Supercapacitor with High True Performance
Volume 11, Pages (January 2019)
Volume 1, Issue 2, Pages (October 2017)
High-Energy Li Metal Battery with Lithiated Host
Bangsen Ouyang, Kewei Zhang, Ya Yang
Volume 1, Issue 4, Pages (December 2017)
Structural Basis of Homology-Directed DNA Repair Mediated by RAD52
Volume 10, Pages (December 2018)
Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment  Yu Miyazawa, Masashi Ikegami, Hsin-Wei Chen, Takeshi Ohshima,
Volume 1, Issue 2, Pages (October 2017)
14.1% Efficient Monolithically Integrated Solar Flow Battery
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Volume 1, Issue 3, Pages (November 2017)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Jiarui He, Yuanfu Chen, Arumugam Manthiram
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Volume 12, Pages (February 2019)
Volume 11, Pages (January 2019)
Aamod V. Desai, Arkendu Roy, Partha Samanta, Biplab Manna, Sujit K
Volume 11, Pages (January 2019)
Volume 7, Pages (September 2018)
Conjugated Polymers with Oligoethylene Glycol Side Chains for Improved Photocatalytic Hydrogen Evolution  Zhicheng Hu, Zhenfeng Wang, Xi Zhang, Haoran.
Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%  Sisi Xiang, Weiping Li, Ya Wei, Jiaming Liu, Huicong Liu,
Yang Lou, Honglu Wu, Jingyue Liu
Xingwen Yu, Arumugam Manthiram
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 1, Issue 2, Pages (October 2017)
Sawanta S. Mali, Jyoti V. Patil, Hyungjin Kim, Chang Kook Hong
Volume 19, Pages (September 2019)
Solution-Deposited Solid-State Electrochromic Windows
Main Text Figures.
Fig. 2 Stabilizing the lithium-electrolyte interface.
by Weijun Ke, Constantinos C
Volume 9, Pages (November 2018)
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Fig. 2 Characterization of metal-chalcogenide thin films.
Anran Li, Jie Lin, Zhongning Huang, Xiaotian Wang, Lin Guo  iScience 
Presentation transcript:

Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4  Jie Ge, Yanfa Yan  iScience  Volume 1, Pages 55-71 (March 2018) DOI: 10.1016/j.isci.2018.02.002 Copyright © 2018 The Author(s) Terms and Conditions

iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 The Element Atomic Ratios of the Electrodeposits Using Various Plating Time Note: electrolyte bath (1 L in volume) based on recipe A5; the other plating parameters include (1) without agitation or bath heating and (2) 4 cm working-counter electrode distance. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 Hull Cell Test Showing the Effects of the Variation of the Working-Counter Electrode Distance on Compositions of the Electrodeposits (A) Schematic drawing for Hull cell set-up. (B) Atomic ratios of the electrodeposit versus the studied working-counter electrode distance. Note: electrolyte bath (1 L in volume) based on recipe A5; the other plating parameters include (1) without agitation or bath heating and (2) 30 min plating time. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 Top-View SEM Images of the Electrodeposits with Nearly Stoichiometric Metal Compositions Desirable for Kesterite Absorbers, Deposited Using the Electrolyte Baths (1 L in Volume) as Described in Table 2 (A) Recipe B1; (B) recipe C1; (C) recipe C2; (D) recipe A5; (E) recipe A6; (F) recipe A7. Note: the other plating parameters include (1) without agitation or bath heating, (2) 30 min plating time, and (3) 4 cm working-counter electrode distance. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 Linear Sweep Voltammetry Scans of the Different Electrolyte Baths (See Table 2) with and without Sodium Thiosulfate Additive iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 5 Photos of the Best Two Electrolyte Baths Containing 5 mM Sodium Thiosulfate Additive after Different Storage Time in Air, Showing that 1 mM Sodium Sulfite Additive Can Considerably Improve the Bath Stability (A) Recipe A6 after 8 hr; (B) recipe A6 after 1 day; (C) recipe A5 after 8 hr; (D) recipe A5 after 1 day; (E) recipe A5 after 2 days. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 6 Uniformity Evaluation of Electrodeposited Precursors on Mo, ITO, and FTO Substrates (2 by 2 inches) Cross-sectional SEM images of the precursor films on (A) Mo, (B) ITO, and (C) FTO substrates; (D) the photos of these precursors showing the uniform, bright, and mirror-like film appearances; (E) metal element atomic ratios from the boxed area (x=3 cm by y=2.5 cm, see panel [D]) showing the element distribution of the precursor based on Mo substrate. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 7 Structural and Compositional Studies of Electrodeposited Precursor Films on Mo, ITO, and FTO Subtrates (A) X-ray diffraction (XRD) patterns; (B) energy dispersive X-ray (EDX) spectra. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 8 X-ray Photoelectron Spectroscopic (XPS) Measurements of An Electrodeposited Precursor Film (A) Full survey spectrum and element quantification result; (B-H) detailed measurements at the region of (B) S 2p, (C) C 1s, (D) O 1s, (E) Zn 2p, (F) Sn 3d, (G) Cu 2p, and (H) Cu LMM. Note: open symbols, raw data; black lines, Shirley/Tougaard background; color lines, fitted peaks; red lines, enveloping curves; BE, binding energy; KE, kinetic energy; subsequent surface cleaning using argon ions was performed to remove the contaminants on the film surface before the XPS measurements. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions

Figure 9 SEM Characterization and Device Characteristic of Cu2ZnSnS4 (CZTS) Absorber Film and Solar Cell based on Mo Substrate (A) Top-view morphological SEM image of our sulfurized CZTS film; (B) cross-sectional SEM image of a finished glass/Mo/CZTS/CdS/ZnO/AZO solar cell; (C) current-voltage (J–V) characteristic under AM 1.5 global illumination and in dark and (D) spectral response of external quantum efficiency (EQE) as well as EQE integrated photocurrent density of our record glass/Mo/CZTS/CdS/ZnO/AZO solar cell. Note: CZTS film was annealed using sulfur powder in a mixed nitrogen (95%) and hydrogen (5%) environment. iScience 2018 1, 55-71DOI: (10.1016/j.isci.2018.02.002) Copyright © 2018 The Author(s) Terms and Conditions