The Derivative: “Introduction to Techniques of Differentiation”

Slides:



Advertisements
Similar presentations
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 1 Review.
Advertisements

Section 4.3 The Derivative in Graphing and Applications- “Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents”
Integration: “the Definition of Area as a Limit; Sigma Notation”
Section 4.4 The Derivative in Graphing and Applications- “Absolute Maxima and Minima”
Integration: “Logarithmic and Other Functions Defined by Integrals”
Section 4.5 The Derivative in Graphing and Applications: “Applied Maximum and Minimum Problems”
Section 4.2 The Derivative in Graphing and Applications- “Analysis of Functions II: Relative Extrema; Graphing Polynomials”
Section 8.3 Slope Fields; Euler’s Method.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All.
Infinite Series: “The Comparison, Ratio, and Root Tests”
Section 9.1 Infinite Series: “Sequences”. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Definition (p. 626)
SECTION 7.2 PRINCIPALS OF INTEGRAL EVALUATION: “INTEGRATION BY PARTS”
Section 9.2 Infinite Series: “Monotone Sequences”.
Section 4.1 The Derivative in Graphing and Applications- “Analysis of Functions I: Increase, Decrease, and Concavity”
“Limits and Continuity”: Continuity
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Section 5.3 Integration: “Integration by Substitution”
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. The Tangent Line Problem.
Section 6.1 Area Between Two Curves. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
“Before Calculus” Functions.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. 2.5 CONTINUITY Intuitively,
Section 6.5 Area of a Surface of Revolution. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright.
Topics in Differentiation: “L’Hopital’s Rule; Indeterminate Forms”
Section 5.6 Integration: “The Fundamental Theorem of Calculus”
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Integration: “Rectilinear Motion Revisited Using Integration”
Section 9.4 Infinite Series: “Convergence Tests”.
“Limits and Continuity”: Limits (An Intuitive Approach)
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall Rules for Differentiation Section 3.3.
Section 9.7 Infinite Series: “Maclaurin and Taylor Polynomials”
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 5 Review.
Section 5.5 Integration: “The Definite Integral”.
 Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Powerpoint Templates Page 1 Powerpoint Templates Review Calculus.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Chapter Integration.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 2.3 Product and Quotient Rules for Differentiation.
Section 8.2 Separation of Variables.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights.
Section 5.2 Integration: “The Indefinite Integral”
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved (p. 443) First Area.
Section 9.6 Infinite Series: “Alternating Series; Absolute and Conditional Convergence”
Topics in Differentiation: “Derivative of Logarithmic Functions”
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Differentiation Techniques: The Power and Sum-Difference Rules OBJECTIVES.
Section 6.6 Work. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons,
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 5 Review.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Chapter Integration.
Topics in Differentiation: “Implicit Differentiation”
Section 4.6 The Derivative in Graphing and Applications: “Rectilinear Motion”
Topics in Differentiation: “Derivatives of Exponential Functions”
MTH 251 – Differential Calculus Chapter 3 – Differentiation Section 3.2 The Derivative as a Function Copyright © 2010 by Ron Wallace, all rights reserved.
“Before Calculus”: Inverse Functions; Inverse Trigonometric Functions.
“Limits and Continuity”: Limits at Infinity; End Behavior of a Function.
Section 9.3 Infinite Series. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
 Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
Topics in Differentiation: “Related Rates”. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright ©
Section 1.6 “Limits and Continuity”:
Volumes by Slicing: Disks and Washers
Differentiation Rules (Constant, Power, Sum, Difference)
Integration: “Evaluating Definite Integrals by Substitution”
Slope Fields; Euler’s Method
“Limits and Continuity”: Computing Limits
Techniques Of Differentiation
The Derivative: “Derivatives of Trigonometric Functions”
Some of the material in these slides is from Calculus 9/E by
The Derivative: “The Chain Rule”
Differentiation Techniques: The Power and Sum-Difference Rules
Presentation transcript:

The Derivative: “Introduction to Techniques of Differentiation” Section 2.3 The Derivative: “Introduction to Techniques of Differentiation”

All graphics are attributed to: Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Summary In this section we will develop some important theorems that will allow us to calculate the derivatives more efficiently. We will only use the “long way” (definition of the derivative) to develop the new shortcuts. 

The Derivative of a Constant If you consider the graph of y=2 (for example), or y = any constant, it is a horizontal line whose slope is zero (see graph page 155 if you have a question). Since the derivative of y=2 equals its slope, the derivative must be 0. y’ = f’(x) = 0

Derivatives of Power Functions We have taken the derivative of linear (x1), quadratic (x2), and cubic (x3) functions in previous sections and talked about the “shortcut rule” or power rule. There is a more formal proof in the middle of page 156.

Derivative of a Constant Times a Function

Derivatives of Sums and Differences We can use a proof very similar to the one on the previous slide (see page 158) to find the derivatives of sums and differences. Which just means that the derivative of a sum/difference equals the sum/difference of the derivatives (as it did with limits).

Example Using These Theorems

Higher Derivatives The second derivative is the derivative of the first derivative and all of the same rules apply. As long as we have differentiability, we can continue the process of differentiating to obtain third, fourth, fifth, and higher derivatives of a given function.

Example of Higher Derivatives

Rocksanna as a baby