Science Skills What is Science?
the independent variable Learn more about the scientific method: http://teacher.nsrl.rochester.edu/phy_labs/appendixe/appendixe.html Observe Add to background information Form a new Hypothesis Create an experiment with a control group and experimental group. Analyze the data Collect data Support hypothesis Reject hypothesis Everything in the experiment should be the same except for the independent variable which is the one thing that is different. Repeat experiment Do something With the findings. Copyright © 2010 Ryan P. Murphy
Experiments search for cause and effect relationships in nature.
Experiments search for cause and effect relationships in nature. These changing quantities are called variables.
Does your grade depend on how much time you spend on your work?
Does your grade depend on how much time you spend on your work? The dependent variable depends on other factors (how much you studied, effort, etc.)
Does your grade depend on how much time you spend on your work? The dependent variable depends on other factors (how much you studied, effort, etc.) Independent variable is the one you have control over (how much you studied).
Does your grade depend on how much time you spend on your work? The dependent variable depends on other factors (how much you studied, effort, etc.) Independent variable is the one you have control over (how much you studied). You have control over your grades.
Variable: Changing quantity of something. -
Variable: Changing quantity of something. -
Variable: Changing quantity of something. -
Variable: Changing quantity of something. -
Independent: (Change) The variable you have control over, what you can choose and manipulate.
Independent: (Change) The variable you have control over, what you can choose and manipulate.
Independent: (Change) The variable you have control over, what you can choose and manipulate.
Dependent: (Observe) What you measure in the experiment and what is affected during the experiment.
Control: (Same) Quantities that a scientist wants to remain constant so it’s a fair test.
Control: (Same) Quantities that a scientist wants to remain constant so it’s a fair test.
Control: (Same) Quantities that a scientist wants to remain constant so it’s a fair test.
Control: (Same) Quantities that a scientist wants to remain constant so it’s a fair test. Everything is exactly the same except for the independent variable
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Height, number of leaves, flowers, etc Problem Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Does fertilizer help a plant to grow? Amount of fertilizer (grams) Growth of the plant, Height, number of leaves, flowers, etc Same amount of soil, light, water, space, all the same.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
Problem? Independent Variable (Change) Dependent Variable (Observe) Control Variable (Same) Do Pillbugs prefer a dark or light environment? One environment is dark, the other is light Count the number of Pillbugs that enter dark chamber. Moisture in both should be the same, temp, no food preference.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on his counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the time it takes each one in minutes in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the time it takes each one in minutes in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the time it takes each one in minutes in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
A student wants to find out what minerals melt ice the fastest A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them.
Problem? = What minerals melt ice quickly? A student wants to find out what minerals melt ice the fastest. So the student places halite, calcite, hematite, and pyrite on equal sized cubes of ice on her counter in the kitchen. The student times how long it takes each mineral to melt completely through the ice cube. She records the minutes it takes for each one to melt in her science journal. Problem? = What minerals melt ice quickly? Independent Variable =Types of Minerals Dependent Variable = Time in minutes Control = Same size ice, temperature acts the same on all of them. Everything is the same except for the minerals
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The students injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The students records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The students records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The students records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers. Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers. Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out how cigarette smoke blown into a small greenhouse of plants damages the plant. The student grows two small plants in separate clear plastic soda bottles. The student injects one with cigarette smoke periodically. Both are watered and given the same light conditions. The student records the height, number of leaves, and flowers of both plants everyday for one month. Problem? = Does cigarette smoke damage plants? Independent Variable = Cigarette Smoke Dependent Variable = Height of plants, leaves, flowers. Control = Both containers were identical except one was given cigarette smoke (independent variable).
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.
A student wants to find out if an egg will crush more easily standing straight-up or on its side. The student creates a chamber that allows weights to be placed on a board that lies on top of the egg. The student places weights in grams on the board with an egg standing straight, and then on its side. The student records the total weight that was on the board when the egg crushed. Problem? = What side of the egg is strongest? Independent Variable = Egg straight or on side. Dependent Variable = Weights in grams Control = Similar brand of egg, similar size, same temp, everything is the same.