Monitoring rare events during an ongoing clinical trial

Slides:



Advertisements
Similar presentations
Improving the quality of data through imputing missing values (Part One: Introduction to types of missing data) Saeid Shahraz MD, PhD Student Heller School.
Advertisements

Previous Lecture: Distributions. Introduction to Biostatistics and Bioinformatics Estimation I This Lecture By Judy Zhong Assistant Professor Division.
ADVANCED STATISTICS FOR MEDICAL STUDIES Mwarumba Mwavita, Ph.D. School of Educational Studies Research Evaluation Measurement and Statistics (REMS) Oklahoma.
Statistical Issues in Research Planning and Evaluation
Chapter 11- Confidence Intervals for Univariate Data Math 22 Introductory Statistics.
Sampling Teaching Research Methods: Resources for HE Social Sciences Practitioners.
Lecture 2 PY 427 Statistics 1 Fall 2006 Kin Ching Kong, Ph.D
Copyright restrictions may apply JAMA Ophthalmology Journal Club Slides: Elevated Intraocular Pressure After Intravitreal Triamcinolone Acetonide Aref.
Census A survey to collect data on the entire population.   Data The facts and figures collected, analyzed, and summarized for presentation and.
Estimation of Various Population Parameters Point Estimation and Confidence Intervals Dr. M. H. Rahbar Professor of Biostatistics Department of Epidemiology.
1 1 Slide © 2005 Thomson/South-Western Chapter 7, Part A Sampling and Sampling Distributions Sampling Distribution of Sampling Distribution of Introduction.
CI - 1 Cure Rate Models and Adjuvant Trial Design for ECOG Melanoma Studies in the Past, Present, and Future Joseph Ibrahim, PhD Harvard School of Public.
Sampling and Confidence Interval
Population All members of a set which have a given characteristic. Population Data Data associated with a certain population. Population Parameter A measure.
Review of Chapters 1- 5 We review some important themes from the first 5 chapters 1.Introduction Statistics- Set of methods for collecting/analyzing data.
Maximum Likelihood Estimator of Proportion Let {s 1,s 2,…,s n } be a set of independent outcomes from a Bernoulli experiment with unknown probability.
Understanding real research 4. Randomised controlled trials.
Sampling and Confidence Interval Kenneth Kwan Ho Chui, PhD, MPH Department of Public Health and Community Medicine
Introduction to Survival Analysis Utah State University January 28, 2008 Bill Welbourn.
Determination of Sample Size: A Review of Statistical Theory
How to Read Scientific Journal Articles
Estimating a Population Mean
Going from data to analysis Dr. Nancy Mayo. Getting it right Research is about getting the right answer, not just an answer An answer is easy The right.
Chapter Eight: Using Statistics to Answer Questions.
Summarizing Risk Analysis Results To quantify the risk of an output variable, 3 properties must be estimated: A measure of central tendency (e.g. µ ) A.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example: In a recent poll, 70% of 1501 randomly selected adults said they believed.
IMPORTANCE OF STATISTICS MR.CHITHRAVEL.V ASST.PROFESSOR ACN.
Compliance Original Study Design Randomised Surgical care Medical care.
 An exposure-response (E-R) analysis in oncology aims at describing the relationship between drug exposure and survival and in addition aims at comparing.
Statistics Nik Bobrovitz BHSc, MSc PhD Student University of Oxford December 2015
European Patients’ Academy on Therapeutic Innovation The Purpose and Fundamentals of Statistics in Clinical Trials.
Course: Research in Biomedicine and Health III Seminar 5: Critical assessment of evidence.
Chapter 7: Statistical Data Treatment & Evaluation CHE 321: Quantitative Chemical Analysis Dr. Jerome Williams, Ph.D. Saint Leo University.
PSY 325 AID Education Expert/psy325aid.com FOR MORE CLASSES VISIT
Outline Historical note about Bayes’ rule Bayesian updating for probability density functions –Salary offer estimate Coin trials example Reading material:
Introduction Data Statistical Methods Table 1: Prevalence of Prior Hip Fracture and Incidence of New Hip Fractures and Fractures of Any Type.
CHAPTER 6: SAMPLING, SAMPLING DISTRIBUTIONS, AND ESTIMATION Leon-Guerrero and Frankfort-Nachmias, Essentials of Statistics for a Diverse Society.
Simulation setup Model parameters for simulations were tuned using repeated measurement data from multiple in-house completed studies and baseline data.
Figure 2 Power of likelihood ratio, log-rank, and Fisher’s exact tests as a function of the relative risk (RR) for different proportions of susceptible.
Quantitative Techniques – Class I
Confidence Intervals and Sample Size
The SPRINT Research Group
Exposure adjustment in Risk-based monitoring in clinical trials with
Frequency Distributions
Disseminating Research Findings Shawn A. Lawrence, PhD, LCSW SOW 3401
Hypotheses and test procedures
Confidence Intervals and p-values
Frequency Distributions
Chapter 8: Inference for Proportions
Elementary Statistics
PROBABILITY AND STATISTICS
INTRODUCTORY STATISTICS FOR CRIMINAL JUSTICE Test Review: Ch. 7-9
Aiying Chen, Scott Patterson, Fabrice Bailleux and Ehab Bassily
Risk ratios 12/6/ : Risk Ratios 12/6/2018 Risk ratios StatPrimer.
Statistical considerations for the Nipah virus treatment study
Chen S, Dong Y, Kiuchi MG, et al
Fung TT, et al. Circulation 2009;119:
Interpreting Basic Statistics
Chapter 5 A Normal World.
Probability.
China PEACE risk estimation tool for in-hospital death from acute myocardial infarction: an early risk classification tree for decisions about fibrinolytic.
Interpreting Epidemiologic Results.
Sampling Presented By Miss. Amunekar Shubhangi Mahadev.
National Quality Assessment of Early Clopidogrel Therapy in Chinese Patients With Acute Myocardial Infarction (AMI) in 2006 and 2011: Insights From the.
The ACCORD Study Group. NEJM 2010; Epub March 14
DRCR Retina Network Treatment for Center-Involved DME in Eyes with Good Visual Acuity (Protocol V)
Davide Capodanno et al. JCIN 2009;2:
Introduction to epidemiology
Exact Inference for Adaptive Group Sequential Clinical Trials
Introductory Statistics
Presentation transcript:

Monitoring rare events during an ongoing clinical trial Haley Hedlin, PhD; Victoria Ding, MS Quantitative Sciences Unit, Department of Medicine, Stanford University

Motivation During oral presentation, start here, go to introductions, skip setup, touch on the simulations setup table, skip to examples, show figures quickly, then summarize findings in discussion We consider the setting where a data and safety monitoring board (DSMB) or another entity is monitoring a rare event during the course of a two-arm study and desires guidelines around whether the event is occurring more often in one arm. We do not consider stopping rules, but instead present guidelines to guide the monitoring in combination with other accumulating information during the trial. Our work is motivated by a real trial where a rare safety event was of interest and the monitoring approach was similar to the CI approach. We aim to provide useful guidelines to be used in monitoring rare events while information is accumulating during a trial. We present a simulation study to evaluate two approaches: the sequential probability ratio test (SPRT) and confidence intervals (CI). 1/8

Examples Figure 1a: Example from a single simulated trial of the SPRT score updated with each patient along with the point the loose and strict thresholds were crossed. Figure 1b: Example from a single simulated trial of the 95% CI updated after every 50 participants. 2/8

Simulation Setup - Table 1 Baseline Risk Treatment Risk Relative Risk 0.02 0.1 5 0.04 2 1 0.005 0.025 0.010 0.001 0.002 Table 1: Assumed proportion of participants in the control and treatment arms experiencing the event of interest and the corresponding relative risk. 3/8

Results – SPRT strict Figure 2: The panels at left display the proportion of trials exceeding their threshold. The panels at right display the median (25th, 75th percentile represented by the error bar) number of patients accrued when the threshold was crossed among trials where the threshold was crossed. 4/8 All analyses were performed in R version 3.5.0.

Results – SPRT loose Figure 2: The panels at left display the proportion of trials exceeding their threshold. The panels at right display the median (25th, 75th percentile represented by the error bar) number of patients accrued when the threshold was crossed among trials where the threshold was crossed. 5/8 All analyses were performed in R version 3.5.0.

Results – 95% Confidence Interval Figure 2: The panels at left display the proportion of trials exceeding their threshold. The panels at right display the median (25th, 75th percentile represented by the error bar) number of patients accrued when the threshold was crossed among trials where the threshold was crossed. 6/8 All analyses were performed in R version 3.5.0.

Discussion The SPRT approach crossed the preset threshold more often than the CI approach in settings where the RR > 1. When RR = 1, the SPRT approach never crossed the threshold while the CI approach crossed it in 0.6% of trials when the baseline risk = 0.005 and in 4.7% of trials when the baseline risk = 0.02. When the threshold was crossed, it was crossed earlier using both SPRT approaches than with the CI approach in nearly all settings. The operating characteristics of the SPRT approach are better than the CI approach in all settings considered. 7/8

Contact For more information please contact Haley Hedlin at hedlin@stanford.edu. For more on the Quantitative Sciences Unit, visit med.stanford.edu/qsu. 8/8

Monitoring rare events during an ongoing clinical trial Introduction Results Haley Hedlin, PhD; Victoria Ding, MS Quantitative Sciences Unit, Department of Medicine, Stanford University Figure 2: The panels at left display the proportion of trials exceeding their threshold. The panels at right display the median (25th, 75th percentile represented by the error bar) number of patients accrued when the threshold was crossed among trials where the threshold was crossed. We conduct a simulation study to evaluate approaches to monitoring rare events during an ongoing a clinical trial. This work builds on a history of interim monitoring in clinical trials and considers the performance of previously developed methods when applied to a rare event , the sequential probability ratio test (SPRT) and confidence intervals (CI).. We aim to provide useful guidelines to be used in monitoring rare events while information is accumulating during a trial. Importantly, we focus on settings where the initial sample sizes are relatively small and the proportion experiencing events are very small. Methods We consider the relative risk of the rare event in the two arms. The SPRT repeatedly evaluates whether a test statistic based on a likelihood ratio exceeds a preset threshold based on ⍺ and β. We assume ⍺ = β = 0.05 (loose) and 0.001 (strict)1,2. Characteristics considered include proportion of simulated trials where the loose and strict SPRT thresholds are crossed and the median and interquartile range of the number of patients when the threshold is crossed. These thresholds from SPRT are considered in combination with the thresholds obtained from central confidence intervals obtained from a Fisher’s exact test3. Characteristics here are: proportion of simulated trials where the lower bound of the 95% CI exceeds 1 and the median and interquartile range of the number of patients when the CI is entirely > 1. Still need 5 slides for oral presentation Motivation We consider the setting where a data and safety monitoring board (DSMB) or another entity is monitoring a rare event during the course of a two-arm study and desires guidelines around whether the event is occurring more often in one arm. We do not consider stopping rules, but instead present guidelines to guide the monitoring in combination with other accumulating information during the trial. Our work is motivated by a real trial where a rare safety event was of interest and the monitoring approach was similar to the CI approach. Discussion The SPRT approach crossed the preset threshold more often than the CI approach in settings where the RR > 1. When the threshold was crossed, it was crossed earlier using both SPRT approaches than with the CI approach in nearly all settings. The operating characteristics of the SPRT approach are better than the CI approach in all settings considered. Figure 1a: Example from a single simulated trial of the SPRT score updated with each patient along with the point the loose and strict thresholds were crossed. Figure 1b: Example from a single simulated trial of the 95% CI updated after every 50 participants.