Find: DOB mg L A B C chloride= Stream A C Q [m3/s]

Slides:



Advertisements
Similar presentations
Water Quality Management in Rivers
Advertisements

DO NOW 1.Get out your calendar 2.Put your Water Filtration Lab in the bin 3.List and explain the steps of water filtration.
To determine how a manmade structure, an overpass, effects aspects of stream water quality and discharge.
Introduction to Environmental Engineering Code No. (PE389) Lec. 3.
Lesson 3 Contents Example 1Radical Equation with a Variable Example 2Radical Equation with an Expression Example 3Variable on Each Side.
Solving Systems Using Elimination
Molarity • Molarity is a measure of molar concentration
Molarity Thornburg 2014.
Find: FR [N] R water d FR R = 20 [m] circular 1.62*107 gate 1.72*107
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: KR,b wave direction αo plan contours view beach db = 15 [ft]
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: FR [kN] on the door Twater= 30 C 1.5 [m] door water wall 1 [m]
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Which one of these is more concentrated?
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: SG air Wcyl,A=350 [N] fluid Wcyl,S=200 [N] r h
Example A city of 200,000 people discharges 37.0 cfs of treated sewage having an ultimate BOD of 28.0 mg/L and 1.8 mg/L DO into a river with a flow of.
Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) C) 14.75
Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Applications of Integration
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: AreaABCD [acres]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Presentation transcript:

Find: DOB mg L A B C chloride=0 2.3 3.7 7.5 9.7 Stream A C Q [m3/s] 6.2 T [C] 19.4 21.0 D [mg/L] 4.49 3.58 o o mg L B A C flow chloride=0 2.3 3.7 7.5 9.7 Find the dissolved oxygen in Stream B, in milligrams per liter. [pause] In this problem, ---

Find: DOB mg L A B C chloride=0 2.3 3.7 7.5 9.7 Stream A C Q [m3/s] 6.2 T [C] 19.4 21.0 D [mg/L] 4.49 3.58 o o mg L B A C flow chloride=0 2.3 3.7 7.5 9.7 Stream A, and Stream B, converge, to create Stream C.

Find: DOB mg L A B C chloride=0 2.3 3.7 7.5 9.7 Stream A C Q [m3/s] 6.2 T [C] 19.4 21.0 D [mg/L] 4.49 3.58 o o mg L B A C flow chloride=0 2.3 3.7 7.5 9.7 The flowrates, temperatures, and oxygen deficits, in Streams A and C, are provided. [pause] For sake of convenience, ----

Find: DOB mg L A B C Stream Q [m3/s] T [C] D [mg/L] A 3.7 21.0 4.49 B 6.2 19.4 3.58 A C flow we’ll add an additional row, for stream B. The concentrations of dissolved oxygen --- B

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow in the three streams are related to each other by their flowrates.

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow The dissolved oxygen concentration in Stream B is a function of the dissolved oxygen concentrations in ---

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC DOB = Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow Streams A and C, as well as the flowrates, in all 3 streams. [pause] The problem statement provides the flowrates --- DOC * QC - DOA * QA DOB = QB

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC DOB = Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow in streams A and C. And the flowrate in Stream B is equal to --- DOC * QC - DOA * QA DOB = QB

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC DOB = Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow the flowrate in stream C, minus the flowrate in stream A, which equals, ---- DOC * QC - DOA * QA DOB = QB QB = QC - QA

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC DOB = Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow 2.5 meters cubed per second. We’ll add this value to the table. DOC * QC - DOA * QA DOB = QB QB = QC - QA QB = 2.5 [m3/s]

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC DOB = Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow [pause] The last two unknown variables, --- DOC * QC - DOA * QA DOB = QB QB = QC - QA QB = 2.5 [m3/s]

Find: DOB mg L A B C DOA * QA + DOB * QB = DOC * QC DOB = Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA * QA + DOB * QB = DOC * QC B A C flow are the dissolved oxygen concentrations, in Stream A and Stream C. [pause] DOC * QC - DOA * QA DOB = QB

Find: DOB mg L A B C DO = DOSAT - D Stream Q [m3/s] T [C] D [mg/L] A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DO = DOSAT - D B A C flow The concentration of dissolved oxygen ---

Find: DOB mg L A B C DO = DOSAT - D Stream Q [m3/s] T [C] D [mg/L] A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DO = DOSAT - D B A C flow in a stream, equals, the saturated --- mg dissolved oxygen L

Find: DOB mg L A B C DO = DOSAT - D Stream Q [m3/s] T [C] D [mg/L] A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DO = DOSAT - D B A C flow concentration of dissolved oxygen, minus, --- saturated mg dissolved oxygen L mg dissolved oxygen L

Find: DOB mg L A B C DO = DOSAT - D Stream Q [m3/s] T [C] D [mg/L] A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 oxygen mg DO = DOSAT - D deficit L B A C flow the oxygen deficit. For this equation, we’ll be working in units of --- saturated mg dissolved oxygen L mg dissolved oxygen L

Find: DOB mg L A B C DO = DOSAT - D Stream Q [m3/s] T [C] D [mg/L] A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 oxygen mg DO = DOSAT - D deficit L B A C flow milligrams per liter, and we’re out to calculate the dissolved oxygen for --- saturated mg dissolved oxygen L mg dissolved oxygen L

Find: DOB mg L A B C DOA= DOA, SAT - DA Stream Q [m3/s] T [C] D [mg/L] 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA B A C flow Stream A, [pause] and for Stream C.

Find: DOB mg L A B C DOA= DOA, SAT - DA DOC= DOC, SAT - DC Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA B A C flow DOC= DOC, SAT - DC For each of these equation we’ve been provided the oxygen deficits, D, ----

Find: DOB mg L A B C DOA= DOA, SAT - DA DOC= DOC, SAT - DC Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA B A C flow DOC= DOC, SAT - DC of 4.49 milligrams per liter, and 3.58 milligrams per liter. The saturated concentration of dissolved oxygen ---

Find: DOB mg L A B C DOA= DOA, SAT - DA DOC= DOC, SAT - DC ƒ(T,CCl-) Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA B A C flow DOC= DOC, SAT - DC is a function of the temperature and chloride concentration, of the water. [pause] Since the problem statement provides the ---- ƒ(T,CCl-)

Find: DOB mg L A B C DOA= DOA, SAT - DA DOC= DOC, SAT - DC ƒ(T,CCl-) Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA B A C flow DOC= DOC, SAT - DC temperatures and chloride concentrations, the corresponding saturated DO concentrations are looked up in a table of values, and equal --- ƒ(T,CCl-) mg L chloride=0

Find: DOB mg L DOA= DOA, SAT - DA = 8.99 -4.49 DOC= DOC, SAT - DC Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA 8.99 milligrams per liter in Stream A, and 9.28 milligrams per liter in Stream C. The resulting dissolved oxygen concentrations are --- mg L mg = 8.99 -4.49 L DOC= DOC, SAT - DC mg L mg = 9.28 -3.58 L

Find: DOB mg L DOA= DOA, SAT - DA = 8.99 -4.49 = 4.50 Stream Q [m3/s] T [C] D [mg/L] o A 3.7 21.0 4.49 B 2.5 o C 6.2 19.4 3.58 DOA= DOA, SAT - DA 4.50 milligrams per liter, and 5.70 milligrams per liter, for Streams A and C, respectively. --- mg mg mg L = 8.99 -4.49 = 4.50 L L DOC= DOC, SAT - DC mg mg mg L = 9.28 -3.58 = 5.70 L L

Find: DOB mg L DOA= DOA, SAT - DA = 8.99 -4.49 = 4.50 Stream Q [m3/s] T [C] D [mg/L] DO [mg/L] o A 3.7 21.0 4.49 4.50 B 2.5 o C 6.2 19.4 3.58 5.70 DOA= DOA, SAT - DA [pause] Returning to our original equation for the concentration of --- mg mg mg = 8.99 -4.49 = 4.50 L L L DOC= DOC, SAT - DC mg mg mg = 9.28 -3.58 = 5.70 L L L

Find: DOB mg L A B C DOB = Stream Q [m3/s] T [C] D [mg/L] DO [mg/L] A 3.7 21.0 4.49 4.50 B 2.5 o C 6.2 19.4 3.58 5.70 DOC*QC - DOA*QA DOB = B A C flow dissolved oxygen in Stream B, the known values are plugged into the equation, --- QB

Find: DOB mg L A B C DOB = Stream Q [m3/s] T [C] D [mg/L] DO [mg/L] A 3.7 21.0 4.49 4.50 B 2.5 o C 6.2 19.4 3.58 5.70 DOC*QC - DOA*QA DOB = B A C flow and the concentration of dissolved oxygen, in Stream B equals, --- QB

Find: DOB mg L A B C DOB = DOB =7.48 Stream Q [m3/s] T [C] D [mg/L] DO [mg/L] o A 3.7 21.0 4.49 4.50 B 2.5 o C 6.2 19.4 3.58 5.70 DOC*QC - DOA*QA DOB = B A C flow 7.48 milligrams per liter. QB mg L DOB =7.48

Find: DOB mg L A B C DOB = 2.3 3.7 7.5 9.7 DOB =7.48 Stream Q [m3/s] T [C] D [mg/L] DO [mg/L] o A 3.7 21.0 4.49 4.50 B 2.5 o C 6.2 19.4 3.58 5.70 DOC*QC - DOA*QA DOB = B A C flow 2.3 3.7 7.5 9.7 When reviewing the possible solutions, --- QB mg L DOB =7.48

Find: DOB mg L AnswerC A B C DOB = 2.3 3.7 7.5 9.7 DOB =7.48 Stream Q [m3/s] T [C] D [mg/L] DO [mg/L] o A 3.7 21.0 4.49 4.50 B 2.5 o C 6.2 19.4 3.58 5.70 DOC*QC - DOA*QA DOB = B A C flow 2.3 3.7 7.5 9.7 the answer is C. QB mg L DOB =7.48 AnswerC

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4