Electron Ring Optics Design

Slides:



Advertisements
Similar presentations
Recirculating pass optics V.Ptitsyn, D.Trbojevic, N.Tsoupas.
Advertisements

LHeC Test Facility Meeting
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz EIC14 Workshop, Jefferson Lab, March 20,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell J. Scott Berg Advanced Accelerator Group Meeting 28 July 2011.
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 LHeC Workshop, Chavennes-de-Bogis, June 26, 2015 LHeC.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Progress on the Linac and RLAs
JLEIC simulations status April 3rd, 2017
PERLE - Current Accelerator Design
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
‘Multi-pass-Droplet’ Experiment
First Look at Nonlinear Dynamics in the Electron Collider Ring
Electron collider ring Chromaticity Compensation and dynamic aperture
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
Muon RLA - Design Status and New Options
XII SuperB Project Workshop LAPP, Annecy, France, March 16-19, 2010
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Optics ‘Scrapbook’ for ERL Test Facility
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
Low Emittance Lattices
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Introduction to the Accelerator and Design
Muon RLA - Design Status and Simulations
Optics considerations for PS2
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Vertical Dogleg Options for the Ion Collider Ring
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
Transfer Line for EIC.
Update on MEIC Ion Polarization Work
Update on MEIC Ion Polarization Work
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
Rough designs for The LEB and HEB for pCDR-100
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Alex Bogacz, Geoff Krafft and Timofey Zolkin
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
More on MEIC Beam Synchronization
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
MEIC beam path change with e-ring bypass lines
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
PERLE - Current Accelerator Design
Presentation transcript:

Electron Ring Optics Design Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators MEIC Review September 2010

Figure-8 Collider Rings total ring circumference ~1000 m 60 deg. crossing Collider Ring size is a compromise between synchrotron radiation and space charge 3-11 GeV electrons 20-60 GeV ions (with 6 Tesla dipoles)

Collider Ring Architecture Larger Figure-8 Rings (~1000 m circumference) 6 Tesla bends for ions at 60 GeV Additional straights to accommodate ‘snakes’ (ions) and RF (electrons) Horizontal IR crossing, dispersion free straights Spin Rotators (4) at arcs ends Electron Collider Ring based on emittance preserving Optics FODO (1350 phase adv/cell) FMC/DBA Optics TEM Optics?

Electron Ring - 1350 FODO Cell E = 11 GeV 4.03051 15 0.15 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.03051 0.5 PHASE_X&Y Q_X Q_Y phase adv/cell: Dfx,y= 1350 Arc dipoles: $Lb=110 cm $B=12.5 kGauss $ang=2.14 deg. $rho = 29.4 meter Arc quadrupoles $Lq=40 cm $G= 9 kG/cm 1350 FODO offers emittance preserving optics – 〈H〉 minimum for FODO lattices Synchrotron radiation power per meter less than 20 kW/m

Emittance preserving Optics 4.03051 15 0.3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 1350 FODO F ~〈H〉 Minimized 〈H〉 over bends H = gD2 + 2aDD’ + bD’2 F  100 Equilibrium rms emittance at 5 GeV: ex = 1.87 ×10-8 m

Quarter Arc Achromat 60 × 1.1 meter dipoles 120 deg. Arc 15 0.15 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 120 deg. Arc 2 dis. sup. cells 2 dis. sup. cells 26 FODO cells 60 × 1.1 meter dipoles

Electron Ring - Arc Optics 260 15 0.15 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 240 deg. Arc quarter Arc – 120 meter Straight – 20 meter quarter Arc – 120 meter

Electron Half-Ring - Lattice 494.097 15 0.15 -0.15 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y ×2 Arc ‘inward’ – 260 m Straight – 234 m Ring circumference – 988 m

Spin Rotator - Ingredients… 320 230 15 0.15 -0.15 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Arc end 4.4 0 8.8 0 Spin rotator ~ 46 m BL = 11.9 Tesla m BL = 28.7 Tesla m

Locally decoupled solenoid 17.9032 15 5 BETA_X&Y[m] BETA_1X BETA_2Y BETA_1Y BETA_2X BL = 28.7 Tesla m solenoid 4.16 m solenoid 4.16 m decoupling quad insert M = C - C

Locally decoupled solenoid 17.9032 15 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y BL = 28.7 Tesla m solenoid 4.16 m solenoid 4.16 m decoupling quad insert M = C - C

Spin Rotator - Optics 5 GeV 4.4 0 8.8 0 Spin rotator ~ 46 m 374 288 30 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.4 0 8.8 0 Spin rotator ~ 46 m BL = 11.9 Tesla m BL = 28.7 Tesla m

Emittance preserving Optics 46 28.5 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y BL = 28.712 Tesla m Solenoid 2 Solenoid 1 8.8 deg. bend Minimized 〈H〉 over bends H = gD2 + 2aDD’ + bD’2

Spin Rotator Pair - Optics 5 GeV 374 288 30 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 575 490 30 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.40 8.80 BL = 11.8 T m BL = 28.7 T m -4.40 -8.80 BL = -11.8 T m BL = -28.7 T m

Lower emittance - upgrade path E = 5 GeV E = 11 GeV 4.03051 15 0.3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.03051 15 0.3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 1350 FODO FMC Cell F = 100 F = 30 exeg = 1.87 ×10-8 m Minimize 〈H〉 over bends H = gD2 + 2aDD’ + bD’2

Extreme emittance preserving Optics E = 11 GeV FMC Cell TEM like Cell 4.03051 15 0.3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.06 20 0.2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y F = 30 F = 3

Summary Complete design of Figure-8 Collider Rings (~ 1000 m circumference) Emittance preserving Arcs based on 1350 FODO lattice Compact spin rotators ‘meshed’ into the arcs No dispersion suppression at arc end Locally decoupled solenoid inserts Beyond 1350 FODO Optics in the arcs FMC Optics TEM Optics?