Synergies between solar UV radiometry and imaging

Slides:



Advertisements
Similar presentations
Temporal and Frequency Variations of Flares observed by LYRA onboard of PROBA2 B. Foing (1), D. Vagg(2), M. Dominique(3),
Advertisements

Reconstruction of the EUV spectral irradiance Atomic data and model atmosphere structures Margit Haberreiter Veronique Delouille, Benjamin Mampeay, Micha.
Workshop „X-ray Spectroscopy and Plasma Diagnostics from the RESIK, RHESSI and SPIRIT Instruments”, 6 – 8 December 2005, Wrocław Spectroscopy Department.
Solar flare studies with the LYRA - instrument onboard PROBA2 Marie Dominique, ROB Supervisor: G. Lapenta Local supervisor: A. Zhukov.
LYRA on-board PROBA2: instrument performances and latest results M. Dominique (1), I. Dammasch (1), M. Kretzschmar (1,2) (1) Royal Observatory of Belgium.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
LYRA status update M. Dominique and I. Dammasch ESWW9, Brussels 2012.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO.
1 G. Cessateur, T. Dudok de Wit, M. Kretzschmar, L. Vieira LPC2E, University of Orléans, France J. Lilensten LPG, University of Grenoble, France New Models.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO (extended version for 11 Oct 2007)
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
Institutes Royal Observatory of Belgium (Brussels, BE) Principal Investigator, overall design, onboard software specification, science operations PMOD/WRC.
PROBA2 a Space Weather Monitor Matthew J West ESWW10 - Nov 2013.
Thermal evolution of flares observed by PROBA2/LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC) COSPAR 39 th.
Solar Irradiance Observations with LYRA on PROBA2 I. E. Dammasch, M. Dominique, J.-F. Hochedez & the LYRA Team X th Hvar Astrophysical Colloquium Hvar,
LYRA on-board PROBA2 EUV irradiance inter-calibration workshop M. Dominique + LYRA team October 2011, LASP.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
Modeling the Solar EUV irradiance
First Results on Solar Irradiance Variability from PROBA2/LYRA/SWAP R. Kariyappa (guest investigator), S. T. Kumar, M. Dominique, D. Berghmans, L. Dame,
Variation of EUV solar irradiances along the cycle Vincenzo Andretta 1, Giulio Del Zanna 2, Seth Wieman 3 1 INAF – Osservatorio Astronomico di Capodimonte,
EUV Irradiance Reconstruction in view of PROBA2 Margit Haberreiter, PMOD/WRC, Davos, Switzerland Cis Verbeeck, Veronique Delouille, Rami Qahwaji ESWW9,
LYRA Status PROBA2 workshop February 2011 M. Dominique + LYRA team.
Five years of EUV solar irradiance evolution, from short to long timescales as observed by PROBA2/LYRA I.E. Dammasch, M. Dominique, L. Wauters, A. Katsiyannis,
 ESA’s “PRoject for On-Board Autonomy”  Belgian microsatellite in Sun-synchronous orbit  725 km altitude  Launched 02 Nov 2009  Nominal operations.
Intriguing Observations of a Failed Eruption? We present observations of a (partially) failed eruption of a magnetic flux rope following an M9.3 flare.
Werner Schmutz, PMOD/WRC Status of the space weather experiments LYRA/PROBA2 and PREMOS/PICARD PMOD/WRC COST 724 project: Short-term variability.
EUS - Science, JCV,RAL, March Solar Orbiter EUI/SOLAR ORBITER Report of the Science WG T. Appourchaux, F. Auchère, L. Harra, E. Marsch, L. Teriaca,
LYRA occultations Meeting 2011/05/05. LYRA: Occultations Lyman α Herzberg Aluminum Zirconium EUVUV Vis (IR ?) Lyman α: very sensitive to Visible and InfraRed.
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
LYRA Calibration using TIMED and SORCE I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation of EUV Instruments.
Degradation of LYRA on PROBA2 after two years in orbit I. E. Dammasch STCE Workshop Brussels, 03 May 2012 LYRA the Large-Yield Radiometer onboard PROBA2.
Solar Physics Task Group Solar Physics Task Group report written by the chair Todd Hoeksema reported by Werner Schmutz
TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.
First Results from the LYRA Solar UV Radiometer J.-F. Hochedez, I. E. Dammasch, M. Dominique & the LYRA Team COSPAR 38 th Scientific Assembly Bremen
ESWW4, Brussels, Novembre 2006 Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes: A review of theories, models.
Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes Jean Lilensten (LPG, Grenoble) Thierry Dudok de Wit (LPCE, Orléans)
Lessons Learnt from SOHO: CME Onsets CME Properties: to kg km/s Average span 45 o Significance: - Coronal evolution - Space weather.
Solar Irradiance (Swiss contributions to ILWS) 4th ILWS general meeting, Beijing, June 22-23, 2006 Werner Schmutz, PMOD/WRC, Switzerland (representing.
1 Automatic flare detection and tracking of active regions in EUV images. Véronique Delouille Joint work with Jean-François Hochedez (ROB), Judith de Patoul.
EUV Spectral Synthesis and Reconstruction Margit Haberreiter, PMOD/WRC, Davos, Switzerland Cis Verbeeck, Veronique Delouille, Rami Qahwaji, Ilaria Ermolli.
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
Correlation between sunspot numbers and EUV irradiance as observed by LYRA on PROBA2 Ingolf. E. Dammasch & Laure Lefevre, ROB SIDC Seminar, Brussels, 10.
LYRA Science Data Products Forthcoming Abstract The satellite PROBA2, built in Belgium and to be launched this summer, is an ESA micro-mission for the.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
Prediction of solar flares on the basis of correlation with long-term irradiance and sunspot levels Ingolf E. Dammasch, Marie Dominique (ROB) SIDC Seminar,
LYRA Calibration, Data Products, Plans I. E. Dammasch, ROB/SIDC PROBA2 Science Meeting Sun 360, Kiel, Jul 2011 LYRA the Large-Yield Radiometer onboard.
Modeling the UV/EUV and its relevance for PROBA2 observations Margit Haberreiter Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center,
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA on PROBA2 I. E. Dammasch¹, M. Dominique¹, M. Kretzschmar¹, P. C. Chamberlin².
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
Flare Irradiance Studies with the EUV Variability Experiment on SDO R. A. Hock, F. G. Eparvier, T. N. Woods, A. R. Jones, University of Colorado at Boulder.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC)
Two years of solar observation with PROBA2/LYRA: An overview I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), XII th Hvar Astrophysical Colloquium.
COSPAR ‘06, Beijing 19 July 2006 UV solar disc imagers of Kuafu-A Pierre Rochus ° Jean-François Hochedez * Jean-Marc Defise ° Pierre-Alexandre Blanche.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
Mid-term Periodicities of the LYRA data spectrum
SPIRIT observations of the Sun in 175 Å and scientific tasks for SWAP&LYRA V. Slemzin P.N. Lebedev Physical Institute, Moscow.
Hauchecorne, M. Meftah, P. Keckhut,
M. Dominique, I.E. Dammasch, L. Wauters, T. Kastiyannis
LYRA Tests and Calibration
in-orbit operations and achievements
LYRA on PROBA2 and other PMOD/WRC irradiance experiments
Combining SWAP and LYRA observations
the Lyman-alpha Radiometer onboard PROBA-2
Swiss contributions to ILWS 13. 6
High-cadence Radio Observations of an EIT Wave
Configuration and Tests
Periodic Acceleration of Electrons in Solar Flares
N. Nitta1, J.-P. Wuelser1, J. Lemen1, M. Aschwanden1, G. Attrill2
Presentation transcript:

Synergies between solar UV radiometry and imaging Matthieu Kretzschmar ° Jean-François Hochedez ° Véronique Delouille ° Vincent Barra * Thierry Dudok de Witte ‘ ° Royal Observatory of Belgium, Brussels * ISIMA, Clermont-Ferrand, France ‘ LPCE, Orléans, France J.-F. Hochedez, COSPAR ’06, Beijing

A metaphor about multi-dimensionality A curtain ! Dr Elephant A snake ! A wall ! J.-F. Hochedez, COSPAR ’06, Beijing

Dimensions of (solar UV) observations Effective area, calibration & signal to noise Cadence Exposure time Field of View Spatial resolution Temporal coverage (Long-term and duty cycle) Spectral range & resolution + polarimetric diagnostics J.-F. Hochedez, COSPAR ’06, Beijing

Imagers vs. spectro-radiometers TIMED-SEE, PROBA2-LYRA… No spatial resolution Spectral resolution! Inflight re-calibrated Full Sun More or less spectral resolution Avoid time gaps Good cadence & SNR EUV Imagers SOHO-EIT, PROBA2-SWAP… Imaging Optical design or rastering Flatfield issues Partial FOV Multilayer passbands Usually not 100% duty cycle Possible polarimetry Photon limited J.-F. Hochedez, COSPAR ’06, Beijing

« the High-cadence solar mission » Launch end 2007 (2-year mission) 60 cm x 70 cm x 85 cm, 120 kg LEO dawn-dusk orbit Demonstrate new space technologies SWAP & LYRA « the High-cadence solar mission » J.-F. Hochedez, COSPAR ’06, Beijing Image courtesy: Verhaert

The solar payload of PROBA2 LYRA VUV, EUV & XUV radiometer PI: JF Hochedez LYRA.oma.be SWAP EUV imager PIs: D Berghmans JM Defise SWAP.oma.be Sun J.-F. Hochedez, COSPAR ’06, Beijing

LYRA highlights 4 channels covering a wide temperature range 200-220 nm Herzberg continuum range Lyman-alpha (121.6 nm) Aluminium filter channel (17-70 nm) incl. He II at 30.4 nm Zirconium filter XUV channel (1-20 nm) (rejects strongly He II) Traceable to radiometric standards Calibration campaigns at PTB Bessy synchrotron In-flight stability Rad-hard, not-cooled, oxide-less diamond UV sensors 2 different LEDs per detector Redundancy (3 units) High cadence (up to 100Hz) Quasi-continuous acquisition during mission lifetime J.-F. Hochedez, COSPAR ’06, Beijing

Dec 2005 tbc J.-F. Hochedez, COSPAR ’06, Beijing April 2006 tbc

One of the 3 LYRA units J.-F. Hochedez, COSPAR ’06, Beijing

SWAP highlights 1 channel at 17.4 nm, 1kx1k CMOS-APS detector Detector and global instrument calibrated at PTB Good cadence 1 min consistent with spatial resolution Quasi-continuous acquisition during mission lifetime Duty cycle limited by telemetry only J.-F. Hochedez, COSPAR ’06, Beijing

PROBA2 SWAP J.-F. Hochedez, COSPAR ’06, Beijing

SWAP TARGETS Dimmings EIT wave Post-eruption arcade Target 1 min image cadence will really resolve in time events like EIT waves. 1 min is what is needed for events propagating at sonic speeds Loop openings Plasmoid lifting Flares Erupting prominences J.-F. Hochedez, COSPAR ’06, Beijing

How can SWAP and LYRA work together? 3,11’’ 1 mn ~10s 17.5 nm 1nm FWHM LYRA None ~50 ms 10 ms [0,20]nm [17,70]nm 121.6 nm [200-220]nm Spatial resolution: Temporal resolution: - Nominal: - Optimal/max: … x 1200 Time 0 mn 1 mn Spectral resolution: Wavelength

Spectral information 1 20 121 200 220 17 70 Wavelength (nm) Can we use the fact that the spectral overlap between the Al & Zr LYRA channels corresponds roughly to the SWAP pass band ? No TBC Can we use the 4 (wide ) LYRA pass bands to model 17.5nm? DEM-like, statistical and/or empirical methods 2 pass bands are optically thick 

Plasma temperatures seen by SWAP and LYRA Zirconium Aluminium SWAP Corona (cold 1MK, and ‘hot’ 10MK) Transition region + Corona. Corona mainly cold LYRA & SWAP spectral coverage are very different  useful to think in term of T° Contribution functions (assuming thermal equilibrium) 104 105 108 106 107 J.-F. Hochedez, COSPAR ’06, Beijing

Preliminary conclusions on combining spectral information Hard to “spectrally” combine LYRA and SWAP But, LYRA Al and Zr include SWAP LYRA-Zr and SWAP observe ~same plasma J.-F. Hochedez, COSPAR ’06, Beijing

Using SWAP to identify the regions that make the irradiance vary Mid-term variation Using SWAP to identify the regions that make the irradiance vary EUV irradiance model track AR, QS, CH Cf. NRLEUV (Warren et al 2001), Kretzschmar et al 2004 If success, whole spectral irradiance variability is modeled hence LYRA time series (at SWAP cadence only) J.-F. Hochedez, COSPAR ’06, Beijing

Using SWAP to identify the regions that make the LYRA irradiances vary Small-term variations Using SWAP to identify the regions that make the LYRA irradiances vary A prospectful new field 4 LYRA pass bands  chronology of solar events in different parts of the solar atmosphere Can we observe irradiance counterparts brightenings, dimmings, others? SEM:0-50 nm J.-F. Hochedez, COSPAR ’06, Beijing

Temporal evolution (1/3) Using radiometers to re-calibrate imagers If roughly the same plasma, one expects similar normalized variations for integrated count rates Cross-calibrations mutually improve long-term stability J.-F. Hochedez, COSPAR ’06, Beijing

Temporal evolution (2/3) Contribution of solar regions to irradiance variations SEM [0.5-50nm] EIT 19.5 nm (integrated) Comparing instruments with different aim(s) and pass bands… e.g. SEM Flares not visible in the integrated EIT flux at 19.5

Temporal evolution (2/3) Contribution of solar regions to irradiance variations Method: Segment regions by hand on 1st image Rotate images so that regions of interest appear always at the same position. Not the best method but fast and quite easy The rotation induces some unwanted effects  Results are indicative & illustrative Data: 1st of April 1997; Several flares and EIT waves EIT image at 19.5 nm every 12 min Irradiance data from SEM 0.1-50 nm and 26-34nm, cadence 5 min

last Last image First image Last, and rotated Last image (rotated) SEM [0.5-50nm] EIT 19.5 nm (integrated) Last image (rotated)

last First image Last, and rotated Last image (rotated) ACTIVE REGION 1 (AR1) Last, and rotated SEM [0.5-50nm] EIT 19.5 nm (integrated) Last image (rotated)

last First image Last, and rotated Last image (rotated) ACTIVE REGION 2 (AR2) Last, and rotated SEM [0.5-50nm] EIT 19.5 nm (integrated) Last image (rotated)

last First image Last, and rotated Last image (rotated) QUIET SUN 1 (QS1) Last, and rotated SEM [0.5-50nm] EIT 19.5 nm (integrated) Last image (rotated)

last First image Last, and rotated Last image (rotated) QUIET SUN 2 (QS2) Last, and rotated SEM [0.5-50nm] EIT 19.5 nm (integrated) Last image (rotated)

Most of the activity associated to AR1 AR2 anti-correlated? SEM 0.1-50 nm SEM 30.4 nm AR1 Most of the activity associated to AR1 AR2 anti-correlated? Some SEM flares not seen in EIT Finer details! AR2 QS1 QS2 (around AR) Instrumental pb

EIT difference images SEM 0.1-50 nm SEM 30.4 nm AR1 AR2 QS1 QS2 (around AR) EIT difference images

Bright front of EIT wave SEM 0.1-50 nm SEM 30.4 nm Flare AR 1 AR 2 Bright front of EIT wave QS 1 QS2 .. And dimming

Temporal evolution (3/3) Imagers can potentially compute irradiance for other heliospheric directions i.e. other planets c.f. Auchère et al 2005 Use hi-cadence radiometer time series to decrease temporal aliasing in image sequences… Having assessed expected variability = f(x,y) J.-F. Hochedez, COSPAR ’06, Beijing

Using LYRA for aeronomy studies Apparent Sun diameter: 25 km PROBA2 has eclipse periods. During occultation, it will see the Sun thru the Earth’s atmosphere This allows LYRA to measure the attenuation of the solar flux from which one can derive atmospheric properties LYRA measurements J.-F. Hochedez, COSPAR ’06, Beijing

Using SWAP for aeronomy studies Independent SWAP occultation observations Cadence limited  Only 17.4nm  Imaging sequence  No need to deconvolve for Sun area No need to assume disc homogeneity SWAP measurements J.-F. Hochedez, COSPAR ’06, Beijing

Conclusion Design new full Sun instruments meant to optimize the spectro-spatio-temporal balance! Spectro-heliograph (such as on CORONAS-F)? Array of >9 “low” spatial resolution multilayer telescopes paving the accessible UV spectrum Smart camera schemes autonomously compromising between cadence and SNR J.-F. Hochedez, COSPAR ’06, Beijing

J.-F. Hochedez, COSPAR ’06, Beijing

Quit complaining about your job! J.-F. Hochedez, COSPAR ’06, Beijing